

Egor Rogov

PostgreSQL 14
Internals

Postgres Professional

Moscow, ����

The elephant on the cover is a fragment of an illustration from Edward Topsell’s

The History of Four-footed Beasts and Serpents, published in London in ����

PostgreSQL 14 Internals

by Egor Rogov

Translated from Russian by Liudmila Mantrova

© Postgres Professional, 2022–2023

ISBN 978-5-6045970-4-0

This book in ��� is available at postgrespro.com/community/books/internals

https://postgrespro.com/community/books/internals

Contents at a Glance

About This Book . 17

1 Introduction . 23

Part I Isolation and MVCC 43

2 Isolation . 45

3 Pages and Tuples . 72

4 Snapshots . 94

5 Page Pruning and HOT Updates . 108

6 Vacuum and Autovacuum . 120

7 Freezing . 145

8 Rebuilding Tables and Indexes . 158

Part II Buffer Cache and WAL 169

9 Buffer Cache . 171

10 Write-Ahead Log . 191

11 WAL Modes . 211

Part III Locks 227

12 Relation-Level Locks . 229

13 Row-Level Locks . 241

14 Miscellaneous Locks . 265

15 Locks on Memory Structures . 276

Part IV Query Execution 285

16 Query Execution Stages . 287

17 Statistics . 310

18 Table Access Methods . 335

19 Index Access Methods . 356

20 Index Scans . 375

21 Nested Loop . 399

3

Contents at a Glance

22 Hashing . 419

23 Sorting and Merging . 442

Part V Types of Indexes 467

24 Hash . 469

25 B-tree . 481

26 GiST . 507

27 SP-GiST . 540

28 GIN . 563

29 BRIN . 591

Conclusion . 618

Index . 619

4

Table of Contents

About This Book 17

1 Introduction 23

1.1 Data Organization . 23

Databases . 23

System Catalog . 24

Schemas . 25

Tablespaces . 26

Relations . 27

Files and Forks . 28

Pages . 32

TOAST . 32

1.2 Processes and Memory . 37

1.3 Clients and the Client-Server Protocol 39

Part I Isolation and MVCC 43

2 Isolation 45

2.1 Consistency . 45

2.2 Isolation Levels and Anomalies in SQL Standard 47

Lost Update . 48

Dirty Reads and Read Uncommitted 48

Non-Repeatable Reads and Read Committed 49

Phantom Reads and Repeatable Read 49

No Anomalies and Serializable . 50

Why These Anomalies? . 50

2.3 Isolation Levels in PostgreSQL . 51

Read Committed . 52

Repeatable Read . 61

Serializable . 67

2.4 Which Isolation Level to Use? . 70

5

Table of Contents

3 Pages and Tuples 72

3.1 Page Structure . 72

Page Header . 72

Special Space . 73

Tuples . 73

Item Pointers . 74

Free Space . 75

3.2 Row Version Layout . 75

3.3 Operations on Tuples . 77

Insert . 78

Commit . 81

Delete . 83

Abort . 84

Update . 85

3.4 Indexes . 86

3.5 TOAST . 87

3.6 Virtual Transactions . 87

3.7 Subtransactions . 88

Savepoints . 88

Errors and Atomicity . 91

4 Snapshots 94

4.1 What is a Snapshot? . 94

4.2 Row Version Visibility . 95

4.3 Snapshot Structure . 96

4.4 Visibility of Transactions’ Own Changes 100

4.5 Transaction Horizon . 102

4.6 System Catalog Snapshots . 105

4.7 Exporting Snapshots . 106

5 Page Pruning and HOT Updates 108

5.1 Page Pruning . 108

5.2 HOT Updates . 112

5.3 Page Pruning for HOT Updates . 115

5.4 HOT Chain Splits . 117

5.5 Page Pruning for Indexes . 118

6

Table of Contents

6 Vacuum and Autovacuum 120

6.1 Vacuum . 120

6.2 Database Horizon Revisited . 123

6.3 Vacuum Phases . 126

Heap Scan . 126

Index Vacuuming . 126

Heap Vacuuming . 127

Heap Truncation . 128

6.4 Analysis . 128

6.5 Automatic Vacuum and Analysis . 129

About the Autovacuum Mechanism 129

Which Tables Need to be Vacuumed? 131

Which Tables Need to Be Analyzed? 133

Autovacuum in Action . 134

6.6 Managing the Load . 138

Vacuum Throttling . 138

Autovacuum Throttling . 139

6.7 Monitoring . 140

Monitoring Vacuum . 140

Monitoring Autovacuum . 143

7 Freezing 145

7.1 Transaction ID Wraparound . 145

7.2 Tuple Freezing and Visibility Rules 146

7.3 Managing Freezing . 149

Minimal Freezing Age . 150

Age for Aggressive Freezing . 151

Age for Forced Autovacuum . 153

Age for Failsafe Freezing . 155

7.4 Manual Freezing . 155

Freezing by Vacuum . 156

Freezing Data at the Initial Loading 156

8 Rebuilding Tables and Indexes 158

8.1 Full Vacuuming . 158

Why is Routine Vacuuming not Enough? 158

Estimating Data Density . 159

7

Table of Contents

Freezing . 162

8.2 Other Rebuilding Methods . 164

Alternatives to Full Vacuuming . 164

Reducing Downtime During Rebuilding 164

8.3 Precautions . 165

Read-Only Queries . 165

Data Updates . 166

Part II Buffer Cache and WAL 169

9 Buffer Cache 171

9.1 Caching . 171

9.2 Buffer Cache Design . 172

9.3 Cache Hits . 174

9.4 Cache Misses . 178

Buffer Search and Eviction . 179

9.5 Bulk Eviction . 181

9.6 Choosing the Buffer Cache Size . 184

9.7 Cache Warming . 187

9.8 Local Cache . 189

10 Write-Ahead Log 191

10.1 Logging . 191

10.2 WAL Structure . 192

Logical Structure . 192

Physical Structure . 196

10.3 Checkpoint . 197

10.4 Recovery . 201

10.5 Background Writing . 204

10.6 WAL Setup . 205

Configuring Checkpoints . 205

Configuring Background Writing . 208

Monitoring . 208

11 WALModes 211

11.1 Performance . 211

8

Table of Contents

11.2 Fault Tolerance . 215

Caching . 215

Data Corruption . 217

Non-Atomic Writes . 219

11.3 WAL Levels . 221

Minimal . 222

Replica . 224

Logical . 226

Part III Locks 227

12 Relation-Level Locks 229

12.1 About Locks . 229

12.2 Heavyweight Locks . 231

12.3 Locks on Transaction IDs . 233

12.4 Relation-Level Locks . 234

12.5 Wait Queue . 237

13 Row-Level Locks 241

13.1 Lock Design . 241

13.2 Row-Level Locking Modes . 242

Exclusive Modes . 242

Shared Modes . 244

13.3 Multitransactions . 245

13.4 Wait Queue . 247

Exclusive Modes . 247

Shared Modes . 253

13.5 No-Wait Locks . 256

13.6 Deadlocks . 258

Deadlocks by Row Updates . 260

Deadlocks Between Two UPDATE Statements 261

14 Miscellaneous Locks 265

14.1 Non-Object Locks . 265

14.2 Relation Extension Locks . 267

14.3 Page Locks . 267

9

Table of Contents

14.4 Advisory Locks . 268

14.5 Predicate Locks . 270

15 Locks on Memory Structures 276

15.1 Spinlocks . 276

15.2 Lightweight Locks . 277

15.3 Examples . 277

Buffer Cache . 277

WAL Buffers . 279

15.4 Monitoring Waits . 280

15.5 Sampling . 282

Part IV Query Execution 285

16 Query Execution Stages 287

16.1 Demo Database . 287

16.2 Simple Query Protocol . 290

Parsing . 290

Transformation . 291

Planning . 294

Execution . 302

16.3 Extended Query Protocol . 304

Preparation . 304

Parameter Binding . 305

Planning and Execution . 306

Getting the Results . 308

17 Statistics 310

17.1 Basic Statistics . 310

17.2 NULL Values . 314

17.3 Distinct Values . 315

17.4 Most Common Values . 317

17.5 Histogram . 320

17.6 Statistics for Non-Scalar Data Types 324

17.7 Average Field Width . 325

17.8 Correlation . 325

10

Table of Contents

17.9 Expression Statistics . 326

Extended Expression Statistics . 327

Statistics for Expression Indexes . 328

17.10 Multivariate Statistics . 329

Functional Dependencies Between Columns 329

Multivariate Number of Distinct Values 331

Multivariate MCV Lists . 333

18 Table Access Methods 335

18.1 Pluggable Storage Engines . 335

18.2 Sequential Scans . 337

Cost Estimation . 338

18.3 Parallel Plans . 342

18.4 Parallel Sequential Scans . 343

Cost Estimation . 343

18.5 Parallel Execution Limitations . 347

Number of Background Workers . 347

Non-Parallelizable Queries . 350

Parallel Restricted Queries . 352

19 Index Access Methods 356

19.1 Indexes and Extensibility . 356

19.2 Operator Classes and Families . 359

Operator Classes . 359

Operator Families . 364

19.3 Indexing Engine Interface . 366

Access Method Properties . 367

Index-Level Properties . 371

Column-Level Properties . 372

20 Index Scans 375

20.1 Regular Index Scans . 375

Cost Estimation . 376

Good Scenario: High Correlation . 377

Bad Scenario: Low Correlation . 380

20.2 Index-Only Scans . 383

Indexes with the Include Clause . 386

11

Table of Contents

20.3 Bitmap Scans . 387

Bitmap Accuracy . 389

Operations on Bitmaps . 390

Cost Estimation . 391

20.4 Parallel Index Scans . 395

20.5 Comparison of Various Access Methods 397

21 Nested Loop 399

21.1 Join Types and Methods . 399

21.2 Nested Loop Joins . 400

Cartesian Product . 401

Parameterized Joins . 405

Caching Rows (Memoization) . 409

Outer Joins . 413

Anti- and Semi-joins . 414

Non-Equi-joins . 417

Parallel Mode . 417

22 Hashing 419

22.1 Hash Joins . 419

One-Pass Hash Joins . 419

Two-Pass Hash Joins . 424

Dynamic Adjustments . 427

Hash Joins in Parallel Plans . 431

Parallel One-Pass Hash Joins . 432

Parallel Two-Pass Hash Joins . 434

Modifications . 437

22.2 Distinct Values and Grouping . 439

23 Sorting and Merging 442

23.1 Merge Joins . 442

Merging Sorted Sets . 442

Parallel Mode . 445

Modifications . 446

23.2 Sorting . 447

Quicksort . 449

Top-N Heapsort . 450

12

Table of Contents

External Sorting . 452

Incremental Sorting . 456

Parallel Mode . 458

23.3 Distinct Values and Grouping . 460

23.4 Comparison of Join Methods . 462

Part V Types of Indexes 467

24 Hash 469

24.1 Overview . 469

24.2 Page Layout . 470

24.3 Operator Class . 476

24.4 Properties . 477

Access Method Properties . 478

Index-Level Properties . 478

Column-Level Properties . 479

25 B-tree 481

25.1 Overview . 481

25.2 Search and Insertions . 482

Search by Equality . 482

Search by Inequality . 484

Search by Range . 484

Insertions . 485

25.3 Page Layout . 486

Deduplication . 491

Compact Storage of Inner Index Entries 492

25.4 Operator Class . 493

Comparison Semantics . 493

Multicolumn Indexes and Sorting . 499

25.5 Properties . 504

Access Method Properties . 504

Index-Level Properties . 504

Column-Level Properties . 505

13

Table of Contents

26 GiST 507

26.1 Overview . 507

26.2 R-Trees for Points . 509

Page Layout . 511

Operator Class . 512

Search for Contained Elements . 514

Nearest Neighbor Search . 517

Insertion . 521

Exclusion Constraints . 522

Properties . 525

26.3 RD-Trees for Full-Text Search . 527

About Full-Text Search . 527

Indexing tsvector Data . 529

Properties . 536

26.4 Other Data Types . 537

27 SP-GiST 540

27.1 Overview . 540

27.2 Quadtrees for Points . 541

Operator Class . 543

Page Layout . 547

Search . 548

Insertion . 549

Properties . 552

27.3 K-Dimensional Trees for Points . 554

27.4 Radix Trees for Strings . 556

Operator Class . 557

Search . 558

Insertion . 560

Properties . 561

27.5 Other Data Types . 562

28 GIN 563

28.1 Overview . 563

28.2 Index for Full-Text Search . 564

Page Layout . 566

Operator Class . 568

14

Table of Contents

Search . 569

Frequent and Rare Lexemes . 571

Insertions . 574

Limiting Result Set Size . 576

Properties . 577

GIN Limitations and RUM Index . 579

28.3 Trigrams . 580

28.4 Indexing Arrays . 582

28.5 Indexing JSON . 585

jsonb_ops Operator Class . 585

jsonb_path_ops Operator Class . 588

28.6 Indexing Other Data Types . 590

29 BRIN 591

29.1 Overview . 591

29.2 Example . 592

29.3 Page Layout . 594

29.4 Search . 596

29.5 Summary Information Updates . 596

Value Insertion . 596

Range Summarization . 597

29.6 Minmax Classes . 598

Choosing Columns to be Indexed . 600

Range Size and Search Efficiency . 601

Properties . 604

29.7 Minmax-Multi Classes . 607

29.8 Inclusion Classes . 610

29.9 Bloom Classes . 613

Conclusion 618

Index 619

15

About This Book

Books are not made to be believed, but to be

subjected to inquiry.

— Umberto Eco, The Name of the Rose

For Whom Is This Book?

This book is for those who will not settle for a black-box approach when work-

ing with a database. If you are eager to learn, prefer not to take expert advice for

granted, and would like to figure out everything yourself, follow along.

I assume that the reader has already tried using Postgre��� and has at least some

general understanding of how it works. Entry-level users may find the text a bit

difficult. For example, I will not tell anything about how to install the server, enter

psql commands, or set configuration parameters.

I hope that the book will also be useful for those who are familiar with another

database system, but switch over to Postgre��� and would like to understand how

they differ. A book like this would have saved me a lot of time several years ago.

And that’s exactly why I finally wrote it.

What This Book Will Not Provide

This book is not a collection of recipes. You cannot find ready-made solutions for

every occasion, but if you understand inner mechanisms of a complex system, you

will be able to analyze and critically evaluate other people’s experience and come

to your own conclusions. For this reason, I explain such details that may at first

seem to be of no practical use.

But this book is not a tutorial either. While delving deeply into some fields (in

which I am more interested myself), it may say nothing at all about the other.

17

About This Book

By no means is this book a reference. I tried to be precise, but I did not aim at

replacing documentation, so I could easily leave out some details that I considered

insignificant. In any unclear situation read the documentation.

This book will not teach you how to develop the Postgre��� core. I do not expect

any knowledge of the C language, as this book is mainly intended for database

administrators and application developers. But I do provide multiple references to

the source code, which can give you as many details as you like, and even more.

What This Book Does Provide

In the introductory chapter, I briefly touch upon the main database concepts that

will serve as the foundation for all the further narration. I do not expect you to

get much new information from this chapter but still include it to complete the

big picture. Besides, this overview can be found useful by those who are migrating

from other database systems.

Part I is devoted to questions of data consistency and isolation. I first cover them

from the user’s perspective (you will learn which isolation levels are available and

what are the implications) and then dwell on their internals. For this purpose,

I have to explain implementation details of multiversion concurrency control and

snapshot isolation, paying special attention to cleanup of outdated row versions.

Part II describes buffer cache and ���, which is used to restore data consistency

after a failure.

Part III goes into details about the structure and usage of various types of locks:

lightweight locks for ���, heavyweight locks for relations, and row-level locks.

Part IVexplains how the server plans and executes ��� queries. I will tell youwhich

data access methods are available, which join methods can be used, and how the

collected statistics are applied.

Part V extends the discussion of indexes from the already covered B-trees to other

access methods. I will explain some general principles of extensibility that define

the boundaries between the core of the indexing system, index access methods,

and data types (which will bring us to the concept of operator classes), and then

elaborate on each of the available methods.

18

Conventions

Postgre��� includes multiple “introspective” extensions, which are not used in

routine work, but give us an opportunity to peek into the server’s internal behav-

ior. This book uses quite a few of them. Apart from letting us explore the server

internals, these extensions can also facilitate troubleshooting in complex usage

scenarios.

Conventions

I tried to write this book in a way that would allow reading it page by page, from

start to finish. But it is hardly possible to uncover all the truth at once, so I had to

get back to one and the same topic several times. Writing that “it will be considered

later” over and over again would inevitably make the text much longer, that’s why

in such cases I simply put the page number in the margin p. ��to refer you to further

discussion. A similar number pointing backwards will take you to the page where

something has been already said on the subject.

Both the text and all the code examples in this book apply to Postgre��� ��. Next

to some paragraphs, you can see a version number in the page margin. v. ��It means

that the provided information is relevant starting from the indicated Postgre���

version, while all the previous versions either did not have the described feature

at all, or used a different implementation. Such notes can be useful for those who

have not upgraded their systems to the latest release yet.

I also use the margins to show the default values of the discussed parameters. The

names of both regular and storage parameters are printed in italics: 4MBwork_mem.

In footnotes, I provide multiple links to various sources of information. There are

several of them,but first and foremost, I list the Postgre��� documentation,1 which

is a wellspring of knowledge. Being an essential part of the project, it is always kept

up-to-date by Postgre��� developers themselves. However, the primary reference

is definitely the source code.2 It is amazing how many answers you can find by

simply reading comments and browsing through ������ files, even if you do not

know C. Sometimes I also refer to commitfest entries:3 you can always trace the

1 postgresql.org/docs/14/index.html
2 git.postgresql.org/gitweb/?p=postgresql.git;a=summary
3 commitfest.postgresql.org

19

https://postgresql.org/docs/14/index.html
https://git.postgresql.org/gitweb/?p=postgresql.git;a=summary
https://commitfest.postgresql.org

About This Book

history of all changes and understand the logic of decisions taken by developers

if you read the related discussions in the psql-hackers mailing list, but it requires

digging through piles of emails.

Side notes that can lead the discussion astray (which I could not help but include into the

book) are printed like this, so they can be easily skipped.

Naturally, the book contains multiple code examples, mainly in ���. The code is

provided with the prompt =>; the server response follows if necessary:

=> SELECT now();

now

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

2023−03−06 14:00:08.008545+03

(1 row)

If you carefully repeat all the provided commands in Postgre��� ��, you should get

exactly the same results (down to transaction ��s and other inessential details).

Anyway, all the code examples in this book have been generated by the script con-

taining exactly these commands.

When it is required to illustrate concurrent execution of several transactions, the

code run in another session is indented and marked off by a vertical line.

=> SHOW server_version;

server_version

−−−−−−−−−−−−−−−−

14.7

(1 row)

To try out such commands (which is useful for self-study, just like any experimen-

tation), it is convenient to open two psql terminals.

The names of commands and various database objects (such as tables and columns,

functions, or extensions) are highlighted in the text using a sans-serif font: ������,

pg_class.

If a utility is called from the operating system, it is shown with a prompt that ends

with $:

20

Acknowledgments

postgres$ whoami

postgres

I use Linux, but without any technicalities; having some basic understanding of

this operating system will be enough.

Acknowledgments

It is impossible to write a book alone, and now I have an excellent opportunity to

thank good people.

I am very grateful to Pavel Luzanov who found the right moment and offered me

to start doing something really worthwhile.

I am obliged to Postgres Professional for the opportunity to work on this book be-

yondmy free time. But there are actual people behind the company, so I would like

to express my gratitude to Oleg Bartunov for sharing ideas and infinite energy, and

to Ivan Panchenko for thorough support and LATEX.

I would like to thank my colleagues from the education team for the creative atmo-

sphere and discussions that shaped the scope and format of our training courses,

which also got reflected in the book. Special thanks to Pavel Tolmachev for his

meticulous review of the drafts.

Many chapters of this book were first published as articles in the Habr blog,1 and I

am grateful to the readers for their comments and feedback. It showed the impor-

tance of thiswork,highlighted some gaps inmy knowledge, and helpedme improve

the text.

I would also like to thank Liudmila Mantrova who has put much effort into pol-

ishing this book’s language. If you do not stumble over every other sentence, the

credit goes to her. Besides, Liudmila took the trouble to translate this book into

English, for which I am very grateful too.

1 habr.com/en/company/postgrespro/blog

21

https://habr.com/en/company/postgrespro/blog

About This Book

I do not provide anynames, but each function or featurementioned in this book has

required years of work done by particular people. I admire Postgre��� developers,

and I am very glad to have the honor of calling many of them my colleagues.

22

1
Introduction

1.1 Data Organization

Databases

Postgre��� is a program that belongs to the class of database management sys-

tems. When this program is running, we call it a Postgre��� server, or instance.

Data managed by Postgre��� is stored in databases.1 A single Postgre��� instance

can serve several databases at a time; together they are called a database cluster.

To be able to use the cluster, you must first initialize2 (create) it. The directory that

contains all the files related to the cluster is usually called ������, after the name

of the environment variable pointing to this directory.

Installations from pre-built packages can add their own “abstraction layers” over the reg-

ular Postgre��� mechanism by explicitly setting all the parameters required by utilities.

In this case, the database server runs as an operating system service, and you may never

come across the ������ variable directly. But the term itself is well-established, so I am

going to use it.

After cluster initialization, ������ contains three identical databases:

template0 is used for cases like restoring data from a logical backup or creating a

database with a different encoding; it must never be modified.

template1 serves as a template for all the other databases that a user can create in

the cluster.

1 postgresql.org/docs/14/managing-databases.html
2 postgresql.org/docs/14/app-initdb.html

23

https://postgresql.org/docs/14/managing-databases.html
https://postgresql.org/docs/14/app-initdb.html

Chapter 1 Introduction

postgres is a regular database that you can use at your discretion.

postgres template0 template1

CREATE DATABASE

newdb

PostgreSQL instance

database
cluster

System Catalog

Metadata of all cluster objects (such as tables, indexes, data types, or functions)

is stored in tables that belong to the system catalog.1 Each database has its own

set of tables (and views) that describe the objects of this database. Several system

catalog tables are common to the whole cluster; they do not belong to any partic-

ular database (technically, a dummy database with a zero �� is used), but can be

accessed from all of them.

The system catalog can be viewed using regular ��� queries,while allmodifications

in it are performed by ��� commands. The psql client also offers a whole range of

commands that display the contents of the system catalog.

Names of all system catalog tables begin with pg_, like in pg_database. Column

names start with a three-letter prefix that usually corresponds to the table name,

like in datname.

In all system catalog tables, the column declared as the primary key is called oid

(object identifier); its type, which is also called oid, is a ��-bit integer.

1 postgresql.org/docs/14/catalogs.html

24

https://postgresql.org/docs/14/catalogs.html

1.1 Data Organization

The implementation of oid object identifiers is virtually the same as that of sequences, but

it appeared in Postgre��� much earlier. What makes it special is that the generated unique

��s issued by a common counter are used in different tables of the system catalog. When

an assigned �� exceeds the maximum value, the counter is reset. To ensure that all values

in a particular table are unique, the next issued oid is checked by the unique index; if it is

already used in this table, the counter is incremented, and the check is repeated.1

Schemas

Schemas2 are namespaces that store all objects of a database. Apart from user

schemas, Postgre��� offers several predefined ones:

public is the default schema for user objects unless other settings are specified.

pg_catalog is used for system catalog tables.

information_schema provides an alternative view for the system catalog as defined

by the ��� standard.

pg_toast is used for objects related to ����� p. ��.

pg_temp comprises temporary tables. Although different users create temporary

tables in different schemas called pg_temp_N, everyone refers to their objects

using the pg_temp alias.

Each schema is confined to a particular database, and all database objects belong

to this or that schema.

If the schema is not specified explicitly when an object is accessed, Postgre��� se-

lects the first suitable schema from the search path. The search path is based on the

value of the search_path parameter, which is implicitly extended with pg_catalog

and (if necessary) pg_temp schemas. It means that different schemas can contain

objects with the same names.

1 backend/catalog/catalog.c, GetNewOidWithIndex function
2 postgresql.org/docs/14/ddl-schemas.html

25

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/catalog/catalog.c;hb=REL_14_STABLE
https://postgresql.org/docs/14/ddl-schemas.html

Chapter 1 Introduction

Tablespaces

Unlike databases and schemas, which determine logical distribution of objects,

tablespaces define physical data layout. A tablespace is virtually a directory in a

file system. You can distribute your data between tablespaces in such a way that

archive data is stored on slow disks, while the data that is being actively updated

goes to fast disks.

One and the same tablespace can be used by different databases, and each database

can store data in several tablespaces. It means that logical structure and physical

data layout do not depend on each other.

Each database has the so-called default tablespace. All database objects are cre-

ated in this tablespace unless another location is specified. System catalog objects

related to this database are also stored there.

postgres template1

pg_catalog public plugh pg_catalog public

pg_global

pg_default

xyzzy

common cluster objects

26

1.1 Data Organization

During cluster initialization, two tablespaces are created:

pg_default is located in the ������/base directory; it is used as the default ta-

blespace unless another tablespace is explicitly selected for this purpose.

pg_global is located in the ������/global directory; it stores system catalog objects

that are common to the whole cluster.

When creating a custom tablespace, you can specify any directory; Postgre��� will

create a symbolic link to this location in the ������/pg_tblspc directory. In fact,

all paths used by Postgre��� are relative to the ������ directory, which allows you

to move it to a different location (provided that you have stopped the server, of

course).

The illustration on the previous page puts together databases, schemas, and ta-

blespaces. Here the postgres database uses tablespace xyzzy as the default one,

whereas the template1 database uses pg_default. Various database objects are

shown at the intersections of tablespaces and schemas.

Relations

For all of their differences, tables and indexes—the most important database

objects—have one thing in common: they consist of rows. This point is quite

self-evident when we think of tables, but it is equally true for �-tree nodes, which

contain indexed values and references to other nodes or table rows.

Some other objects also have the same structure; for example, sequences (virtual-

ly one-row tables) and materialized views (which can be thought of as tables that

“keep” the corresponding queries). Besides, there are regular views, which do not

store any data but otherwise are very similar to tables.

In Postgre���, all these objects are referred to by the generic term relation.

In my opinion, it is not a happy term because it confuses database tables with “genuine”

relations defined in the relational theory. Here we can feel the academic legacy of the

project and the inclination of its founder, Michael Stonebraker, to see everything as a rela-

tion. In one of his works, he even introduced the concept of an “ordered relation” to denote

a table in which the order of rows is defined by an index.

27

Chapter 1 Introduction

The system catalog table for relations was originally called pg_relation, but following the

object orientation trend, it was soon renamed to pg_class, which we are now used to. Its

columns still have the ��� prefix though.

Files and Forks

All information associated with a relation is stored in several different forks,1 each

containing data of a particular type.

At first, a fork is represented by a single file. Its filename consists of a numeric ��

(oid), which can be extended by a suffix that corresponds to the fork’s type.

The file grows over time, and when its size reaches � ��, another file of this fork

is created (such files are sometimes called segments). The sequence number of the

segment is added to the end of its filename.

Thefile size limit of � ��was historically established to support various file systems

that could not handle large files. You can change this limit when building Post-

gre��� (./configure --with-segsize).

visibility map

free space map

the main fork

12345_vm

12345_fsm.1

12345_fsm

12345.2

12345.1

12345

1 postgresql.org/docs/14/storage-file-layout.html

28

https://postgresql.org/docs/14/storage-file-layout.html

1.1 Data Organization

Thus, a single relation is represented on disk by several files. Even a small table

without indexes will have at least three files, by the number of mandatory forks.

Each tablespace directory (except for pg_global) contains separate subdirectories

for particular databases. All files of the objects belonging to the same tablespace

and database are located in the same subdirectory. You must take it into account

because toomany files in a single directorymay not be handled well by file systems.

There are several standard types of forks.

The main fork represents actual data: table rows or index rows. This fork is avail-

able for any relations (except for views, which contain no data).

Files of the main fork are named by their numeric ��s, which are stored as

relfilenode values in the pg_class table.

Let’s take a look at the path to a file that belongs to a table created in the

pg_default tablespace:

=> CREATE UNLOGGED TABLE t(

a integer,

b numeric,

c text,

d json

);

=> INSERT INTO t VALUES (1, 2.0, 'foo', '{}');

=> SELECT pg_relation_filepath('t');

pg_relation_filepath

−−−−−−−−−−−−−−−−−−−−−−

base/16384/16385

(1 row)

The base directory corresponds to the pg_default tablespace, the next sub-

directory is used for the database, and it is here that we find the file we are

looking for:

=> SELECT oid FROM pg_database WHERE datname = 'internals';

oid

−−−−−−−

16384

(1 row)

29

Chapter 1 Introduction

=> SELECT relfilenode FROM pg_class WHERE relname = 't';

relfilenode

−−−−−−−−−−−−−

16385

(1 row)

Here is the corresponding file in the file system:

=> SELECT size

FROM pg_stat_file('/usr/local/pgsql/data/base/16384/16385');

size

−−−−−−

8192

(1 row)

The initialization fork1 is available only for unlogged tables (created with the ��-

������ clause) and their indexes. Such objects are the same as regular ones,

except that any actions performed on them are not written into the write-

ahead log.p. ��� It makes these operations considerably faster, but you will not be

able to restore consistent data in case of a failure. Therefore, Postgre��� sim-

ply deletes all forks of such objects during recovery and overwrites the main

fork with the initialization fork, thus creating a dummy file.

The t table is created as unlogged, so the initialization fork is present. It has

the same name as the main fork, but with the _init suffix:

=> SELECT size

FROM pg_stat_file('/usr/local/pgsql/data/base/16384/16385_init');

size

−−−−−−

0

(1 row)

The free space map2 keeps track of available space within pages. Its volume

changes all the time, growing after vacuuming and getting smaller when new

row versions appear. The free space map is used to quickly find a page that

can accommodate new data being inserted.

1 postgresql.org/docs/14/storage-init.html
2 postgresql.org/docs/14/storage-fsm.html

backend/storage/freespace/README

30

https://postgresql.org/docs/14/storage-init.html
https://postgresql.org/docs/14/storage-fsm.html
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/storage/freespace/README;hb=REL_14_STABLE

1.1 Data Organization

All files related to the free space map have the _fsm suffix. Initially, no such

files are created; they appear only when necessary. The easiest way to get

them is to vacuum a table p. ���:

=> VACUUM t;

=> SELECT size

FROM pg_stat_file('/usr/local/pgsql/data/base/16384/16385_fsm');

size

−−−−−−−

24576

(1 row)

To speed up search, the free space map is organized as a tree; it takes at least

three pages (hence its file size for an almost empty table).

The free space map is provided for both tables and indexes. But since an index

row cannot be added into an arbitrary page (for example, �-trees define the

place of insertion by the sort order), Postgre��� tracks only those pages that

have been fully emptied and can be reused in the index structure.

The visibility map1 can quickly show whether a page needs to be vacuumed or

frozen. For this purpose, it provides two bits for each table page.

The first bit is set for pages that contain only up-to-date row versions. Vac-

uum p. ���skips such pages because there is nothing to clean up. Besides, when a

transaction tries to read a row from such a page, there is no point in checking

its visibility, so an index-only scan can be used. p. ���

The second bit v. �.�is set for pages that contain only frozen row versions. I will use

the term freeze p. ���map to refer to this part of the fork.

Visibility map files have the _vm suffix. They are usually the smallest ones:

=> SELECT size

FROM pg_stat_file('/usr/local/pgsql/data/base/16384/16385_vm');

size

−−−−−−

8192

(1 row)

The visibility map is provided for tables, but not for indexes. p. ��

1 postgresql.org/docs/14/storage-vm.html

31

https://postgresql.org/docs/14/storage-vm.html

Chapter 1 Introduction

Pages

To facilitate �/�, all files are logically split into pagesp. �� (or blocks), which represent

the minimum amount of data that can be read or written. Consequently, many

internal Postgre��� algorithms are tuned for page processing.

The page size is usually � k�. It can be configured to some extent (up to �� k�), but

only at build time (./configure --with-blocksize), and nobody usually does it. Once

built and launched, the instance can work only with pages of the same size; it is

impossible to create tablespaces that support different page sizes.

Regardless of the fork they belong to, all the files are handled by the server in

roughly the same way. Pages are first moved to the bufferp. ��� cache (where they can

be read and updated by processes) and then flushed back to disk as required.

TOAST

Each row must fit a single page: there is no way to continue a row on the next

page. To store long rows, Postgre��� uses a special mechanism called �����1 (The

Oversized Attributes Storage Technique).

T���� implies several strategies. You can move long attribute values into a sep-

arate service table, having sliced them into smaller “toasts.” Another option is to

compress a long value in such a way that the row fits the page. Or you can do both:

first compress the value, and then slice and move it.

If the main table contains potentially long attributes, a separate ����� table is

created for it right away, one for all the attributes. For example, if a table has a

column of the numeric or text type, a ����� table will be created even if this column

will never store any long values.

For indexes, the ����� mechanism can offer only compression; moving long at-

tributes into a separate table is not supported. It limits the size of the keys that can

be indexed (the actual implementation depends on a particular operator classp. ���).

1 postgresql.org/docs/14/storage-toast.html

include/access/heaptoast.h

32

https://postgresql.org/docs/14/storage-toast.html
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/include/access/heaptoast.h;hb=REL_14_STABLE

1.1 Data Organization

By default, the ����� strategy is selected based on the data type of a column. The

easiest way to review the used strategies is to run the \d+ command in psql, but I

will query the system catalog to get an uncluttered output:

=> SELECT attname, atttypid::regtype,

CASE attstorage

WHEN 'p' THEN 'plain'

WHEN 'e' THEN 'external'

WHEN 'm' THEN 'main'

WHEN 'x' THEN 'extended'

END AS storage

FROM pg_attribute

WHERE attrelid = 't'::regclass AND attnum > 0;

attname | atttypid | storage

−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−

a | integer | plain

b | numeric | main

c | text | extended

d | json | extended

(4 rows)

Postgre��� supports the following strategies:

plain means that ����� is not used (this strategy is applied to data types that are

known to be “short,” such as the integer type).

extended allows both compressing attributes and storing them in a separate �����

table.

external implies that long attributes are stored in the ����� table in an uncom-

pressed state.

main requires long attributes to be compressed first; they will be moved to the

����� table only if compression did not help.

In general terms, the algorithm looks as follows.1 Postgre��� aims at having at

least four rows in a page. So if the size of the row exceeds one fourth of the page,

excluding the header (for a standard-size page it is about ���� bytes), we must ap-

ply the �����mechanism to some of the values. Following the workflow described

below, we stop as soon as the row length does not exceed the threshold anymore:

1 backend/access/heap/heaptoast.c

33

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/heap/heaptoast.c;hb=REL_14_STABLE

Chapter 1 Introduction

1. First of all, we go through attributes with external and extended strategies,

starting from the longest ones. Extended attributes get compressed, and if the

resulting value (on its own, without taking other attributes into account) ex-

ceeds one fourth of the page, it ismoved to the ����� table right away. External

attributes are handled in the same way, except that the compression stage is

skipped.

2. If the row still does not fit the page after the first pass, we move the remaining

attributes that use external or extended strategies into the ����� table, one by

one.

3. If it did not help either, we try to compress the attributes that use the main

strategy, keeping them in the table page.

4. If the row is still not short enough, the main attributes are moved into the

����� table.

The threshold valuev. �� is ���� bytes, but it can be redefined at the table level using

the toast_tuple_target storage parameter.

It may sometimes be useful to change the default strategy for some of the col-

umns. If it is known in advance that the data in a particular column cannot be

compressed (for example, the column stores ���� images), you can set the external

strategy for this column; it allows you to avoid futile attempts to compress the

data. The strategy can be changed as follows:

=> ALTER TABLE t ALTER COLUMN d SET STORAGE external;

If we repeat the query, we will get the following result:

attname | atttypid | storage

−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−

a | integer | plain

b | numeric | main

c | text | extended

d | json | external

(4 rows)

T���� tables reside in a separate schema called pg_toast; it is not included into

the search path, so ����� tables are usually hidden. For temporary tables,

pg_toast_temp_N schemas are used, by analogy with pg_temp_N.

34

1.1 Data Organization

Let’s take a look at the inner mechanics of the process. Suppose table t contains

three potentially long attributes; it means that there must be a corresponding

����� table. Here it is:

=> SELECT relnamespace::regnamespace, relname

FROM pg_class

WHERE oid = (

SELECT reltoastrelid

FROM pg_class WHERE relname = 't'

);

relnamespace | relname

−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−

pg_toast | pg_toast_16385

(1 row)

=> \d+ pg_toast.pg_toast_16385

TOAST table "pg_toast.pg_toast_16385"

Column | Type | Storage

−−−−−−−−−−−−+−−−−−−−−−+−−−−−−−−−

chunk_id | oid | plain

chunk_seq | integer | plain

chunk_data | bytea | plain

Owning table: "public.t"

Indexes:

"pg_toast_16385_index" PRIMARY KEY, btree (chunk_id, chunk_seq)

Access method: heap

It is only logical that the resulting chunks of the toasted row use the plain strategy:

there is no second-level �����.

Apart from the ����� table itself, Postgre��� creates the corresponding index in

the same schema. This index is always used to access ����� chunks. The name

of the index is displayed in the output, but you can also view it by running the

following query:

=> SELECT indexrelid::regclass FROM pg_index

WHERE indrelid = (

SELECT oid

FROM pg_class WHERE relname = 'pg_toast_16385'

);

indexrelid

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

pg_toast.pg_toast_16385_index

(1 row)

35

Chapter 1 Introduction

=> \d pg_toast.pg_toast_16385_index

Unlogged index "pg_toast.pg_toast_16385_index"

Column | Type | Key? | Definition

−−−−−−−−−−−+−−−−−−−−−+−−−−−−+−−−−−−−−−−−−

chunk_id | oid | yes | chunk_id

chunk_seq | integer | yes | chunk_seq

primary key, btree, for table "pg_toast.pg_toast_16385"

Thus, a ����� table increases the minimum number of fork files used by the table

up to eight: three for the main table, three for the ����� table, and two for the

����� index.

Column c uses the extended strategy, so its values will be compressed:

=> UPDATE t SET c = repeat('A',5000);

=> SELECT * FROM pg_toast.pg_toast_16385;

chunk_id | chunk_seq | chunk_data

−−−−−−−−−−+−−−−−−−−−−−+−−−−−−−−−−−−

(0 rows)

The ����� table is empty: repeated symbols have been compressed by the �� al-

gorithm, so the value fits the table page.

And now let’s construct this value of random symbols:

=> UPDATE t SET c = (

SELECT string_agg(chr(trunc(65+random()*26)::integer), '')

FROM generate_series(1,5000)

)

RETURNING left(c,10) || '...' || right(c,10);

?column?

−−−−−−−−−−−−−−−−−−−−−−−−−

YEYNNDTSZR...JPKYUGMLDX

(1 row)

UPDATE 1

This sequence cannot be compressed, so it gets into the ����� table:

=> SELECT chunk_id,

chunk_seq,

length(chunk_data),

left(encode(chunk_data,'escape')::text, 10) || '...' ||

right(encode(chunk_data,'escape')::text, 10)

FROM pg_toast.pg_toast_16385;

36

1.2 Processes and Memory

chunk_id | chunk_seq | length | ?column?

−−−−−−−−−−+−−−−−−−−−−−+−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−

16390 | 0 | 1996 | YEYNNDTSZR...TXLNDZOXMY

16390 | 1 | 1996 | EWEACUJGZD...GDBWMUWTJY

16390 | 2 | 1008 | GSGDYSWTKF...JPKYUGMLDX

(3 rows)

We can see that the characters are sliced into chunks. The chunk size is selected in

such away that the page of the ����� table can accommodate four rows. This value

varies a little from version to version depending on the size of the page header.

When a long attribute is accessed, Postgre��� automatically restores the original

value and returns it to the client; it all happens seamlessly for the application. If

long attributes do not participate in the query, the ����� table will not be read at

all. It is one of the reasons why you should avoid using the asterisk in production

solutions.

If v. ��the client queries one of the first chunks of a long value, Postgre��� will read the

required chunks only, even if the value has been compressed.

Nevertheless, data compression and slicing require a lot of resources; the same

goes for restoring the original values. That’s why it is not a good idea to keep

bulky data in Postgre���, especially if this data is being actively used and does

not require transactional logic (like scanned accounting documents). A potentially

better alternative is to store such data in the file system, keeping in the database

only the names of the corresponding files. But then the database system cannot

guarantee data consistency.

1.2 Processes and Memory

A Postgre��� server instance consists of several interacting processes.

The first process launched at the server start is postgres, which is traditionally

called postmaster. It spawns all the other processes (Unix-like systems use the fork

system call for this purpose) and supervises them: if any process fails, postmas-

ter restarts it (or the whole server if there is a risk that the shared data has been

damaged).

37

Chapter 1 Introduction

Because of its simplicity, the process model has been used in Postgre��� from the very

beginning, and ever since there have been unending discussions about switching over to

threads.

The current model has several drawbacks: static shared memory allocation does not allow

resizing structures like buffer cache on the fly; parallel algorithms are hard to imple-

ment and less efficient than they could be; sessions are tightly bound to processes. Using

threads sounds promising, even though it involves some challenges related to isolation,

OS compatibility, and resource management. However, their implementation would re-

quire a radical code overhaul and years of work, so conservative views prevail for now: no

such changes are expected in the near future.

Server operation is maintained by background processes. Here are the main ones:

startup restores the system after a failure.

autovacuum removesp. ��� stale data from tables and indexes.

wal writer writes ��� entries to diskp. ��� .

checkpointer executes checkpointsp. ��� .

writer flushes dirty pages to diskp. ��� .

stats collector collects usage statistics for the instance.

wal sender sends ��� entries to a replica.

wal receiver gets ��� entries on a replica.

Some of these processes are terminated once the task is complete, others run in

the background all the time, and some can be switched off.

Each process is managed by configuration parameters, sometimes by dozens of them. To

set up the server in a comprehensive manner, you have to be aware of its inner workings.

But general considerations will only help you select more or less adequate initial values;

later on, these settings have to be fine-tuned based on monitoring data.

To enable process interaction, postmaster allocates shared memory, which is avail-

able to all the processes.

Since disks (especially ���, but ��� too) are much slower than ���, Postgre���

uses caching:p. ��� some part of the shared ��� is reserved for recently read pages, in

hope that they will be needed more than once and the overhead of repeated disk

38

1.3 Clients and the Client-Server Protocol

access will be reduced. Modified data is also flushed to disk after some delay, not

immediately.

Buffer cache takes the greater part of the sharedmemory,which also contains other

buffers used by the server to speed up disk access.

The operating system has its own cache too. Postgre��� (almost) never bypasses

the operating system mechanisms to use direct �/�, so it results in double caching.

backendbackend

postmaster

backend background processes

buffer cache

shared memory

PostgreSQL
instance

client
application

client
application

client
application

cache

operating
system

In case of a failure (such as a power outage or an operating system crash), the data

kept in ��� is lost, including that of the buffer cache. The files that remain on

disk have their pages written at different points in time. To be able to restore data

consistency, Postgre��� maintains the write-ahead log (���) p. ���during its operation,

which makes it possible to repeat lost operations when necessary.

1.3 Clients and the Client-Server Protocol

Another task of the postmaster process is to listen for incoming connections. Once

a new client appears, postmaster spawns a separate backend process.1 The client

1 backend/tcop/postgres.c, PostgresMain function

39

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/tcop/postgres.c;hb=REL_14_STABLE

Chapter 1 Introduction

establishes a connection and starts a session with this backend. The session con-

tinues until the client disconnects or the connection is lost.

The server has to spawn a separate backend for each client. If many clients are

trying to connect, it can turn out to be a problem.

• Each process needs ��� to cache catalog tables, prepared statementsp. ��� , inter-

mediate query resultsp. ��� , and other data. The more connections are open, the

more memory is required.

• If connections are short and frequent (a client performs a small query and

disconnects), the cost of establishing a connection, spawning a new process,

and performing pointless local caching is unreasonably high.

• Themore processes are started, themore time is required to scan their list, and

this operation is performed very often.p. �� As a result, performance may decline

as the number of clients grows.

This problem can be resolved by connection pooling, which limits the number of

spawned backends. Postgre��� has no such built-in functionality, so we have to

rely on third-party solutions: pooling managers integrated into the application

server or external tools (such as PgBouncer1 or Odyssey2). This approach usually

means that each server backend can execute transactions of different clients, one

after another. It imposes some restrictions on application development since it

is only allowed to use resources that are local to a transaction, not to the whole

session.

To understand each other, a client and a server must use one and the same inter-

facing protocol.3 It is usually based on the standard libpq library, but there are also

other custom implementations.

Speaking in the most general terms, the protocol allows clients to connect to the

server and execute ��� queries.

A connection is always established to a particular database on behalf of a particu-

lar role, or user. Although the server supports a database cluster, it is required to

establish a separate connection to each database that you would like to use in your

1 pgbouncer.org
2 github.com/yandex/odyssey
3 postgresql.org/docs/14/protocol.html

40

https://pgbouncer.org
https://github.com/yandex/odyssey
https://postgresql.org/docs/14/protocol.html

1.3 Clients and the Client-Server Protocol

application. At this point,authentication is performed: the backend process verifies

the user’s identity (for example, by asking for the password) and checks whether

this user has the right to connect to the server and to the specified database.

S�� queries are passed to the backend process as text strings. The process parses

the text, optimizes the query, executes it, and returns the result to the client.

41

Part I

Isolation
and MVCC

2
Isolation

2.1 Consistency

The key feature of relational databases is their ability to ensure data consistency,

that is, data correctness.

It is a known fact that at the database level it is possible to create integrity con-

straints, such as ��� ���� or ������. The database system ensures that these con-

straints are never broken, so data integrity is never compromised.

If all the required constraints could be formulated at the database level, consis-

tency would be guaranteed. But some conditions are too complex for that, for

example, they touch upon several tables at once. And even if a constraint can be

defined in the database, but for some reason it is not, it does not mean that this

constraint may be violated.

Thus, data consistency is stricter than integrity, but the database system has no

idea what “consistency” actually means. If an application breaks it without break-

ing the integrity, there is no way for the database system to find out. Consequently,

it is the application that must lay down the criteria for data consistency, and we

have to believe that it is written correctly and will never have any errors.

But if the application always executes only correct sequences of operators, where

does the database system come into play?

First of all, a correct sequence of operators can temporarily break data consistency,

and—strange as it may seem—it is perfectly normal.

Ahackneyed but clear example is a transfer of funds fromone account to another. A

consistency rule may sound as follows: a money transfer must never change the total

45

Chapter 2 Isolation

balance of the affected accounts. It is quite difficult (although possible) to formulate

this rule as an integrity constraint in ���, so let’s assume that it is defined at the

application level and remains opaque to the database system. A transfer consists of

two operations: the first one draws somemoney from one of the accounts,whereas

the second one adds this sum to another account. The first operation breaks data

consistency, whereas the second one restores it.

If the first operation succeeds, but the second one does not (because of some fail-

ure), data consistency will be broken. Such situations are unacceptable, but it takes

a great deal of effort to detect and address them at the application level. Luckily

it is not required—the problem can be completely solved by the database system

itself if it knows that these two operations constitute an indivisible whole, that is,

a transaction.

But there is also a more subtle aspect here. Being absolutely correct on their own,

transactions can start operating incorrectly when run in parallel. That’s because

operations belonging to different transactions often get intermixed. There would

be no such issues if the database system first completed all operations of one trans-

action and thenmoved on to the next one, but performance of sequential execution

would be implausibly low.

A truly simultaneous execution of transactions can only be achieved on systems with suit-

able hardware: a multi-core processor, a disk array, and so on. But the same reasoning

is also true for a server that executes commands sequentially in the time-sharing mode.

For generalization purposes, both these situations are sometimes referred to as concurrent

execution.

Correct transactions that behave incorrectly when run together result in concur-

rency anomalies, or phenomena.

Here is a simple example. To get consistent data from the database, the applica-

tion must not see any changes made by other uncommitted transactions, at the

very minimum. Otherwise (if some transactions are rolled back), it would see the

database state that has never existed. Such an anomaly is called a dirty read. There

are also many other anomalies, which are more complex.

When running transactions concurrently, the database must guarantee that the

result of such execution will be the same as the outcome of one of the possible se-

46

2.2 Isolation Levels and Anomalies in SQL Standard

quential executions. In other words, it must isolate transactions from one another,

thus taking care of any possible anomalies.

To sum it up, a transaction is a set of operations that takes the database from one

correct state to another correct state (consistency), provided that it is executed in

full (atomicity) and without being affected by other transactions (isolation). This

definition combines the requirements implied by the first three letters of the ����

acronym. They are so intertwined that it makes sense to discuss them together. In

fact, the durability p. ���requirement is hardly possible to split off either: after a crash,

the system may still contain some changes made by uncommitted transactions,

and you have to do something about it to restore data consistency.

Thus, the database system helps the application maintain data consistency by tak-

ing transaction boundaries into account, even though it has no idea about the im-

plied consistency rules.

Unfortunately, full isolation is hard to implement and can negatively affect per-

formance. Most real-life systems use weaker isolation levels, which prevent some

anomalies, but not all of them. It means that the job of maintaining data consis-

tency partially falls on the application. And that’s exactly why it is very important

to understand which isolation level is used in the system, what is guaranteed at

this level and what is not, and how to ensure that your code will be correct in such

conditions.

2.2 Isolation Levels and Anomalies in SQL Standard

The ��� standard specifies four isolation levels.1 These levels are defined by the list

of anomalies that may or may not occur during concurrent transaction execution.

So when talking about isolation levels, we have to start with anomalies.

We should bear in mind that the standard is a theoretical construct: it affects the

practice, but the practice still diverges from it in lots of ways. That’s why all ex-

1 postgresql.org/docs/14/transaction-iso.html

47

https://postgresql.org/docs/14/transaction-iso.html

Chapter 2 Isolation

amples here are rather hypothetical. Dealing with transactions on bank accounts,

these examples are quite self-explanatory, but I have to admit that they have noth-

ing to do with real banking operations.

It is interesting that the actual database theory also diverges from the standard: it

was developed after the standard had been adopted, and the practice was already

well ahead.

Lost Update

The lost update anomaly occurs when two transactions read one and the same table

row, then one of the transactions updates this row, and finally the other transaction

updates the same row without taking into account any changes made by the first

transaction.

Suppose that two transactions are going to increase the balance of one and the

same account by $���. The first transaction reads the current value ($�,���), then

the second transaction reads the same value. The first transaction increases the

balance (making it $�,���) and writes the new value into the database. The second

transaction does the same: it gets $�,��� after increasing the balance and writes

this value. As a result, the customer loses $���.

Lost updates are forbidden by the standard at all isolation levels.

Dirty Reads and Read Uncommitted

The dirty read anomaly occurs when a transaction reads uncommitted changes

made by another transaction.

For example, the first transaction transfers $��� to an empty account but does not

commit this change. Another transaction reads the account state (which has been

updated but not committed) and allows the customer to withdraw the money—

even though the first transaction gets interrupted and its changes are rolled back,

so the account is empty.

The standard allows dirty reads at the Read Uncommitted level.

48

2.2 Isolation Levels and Anomalies in SQL Standard

Non-Repeatable Reads and Read Committed

The non-repeatable read anomaly occurs when a transaction reads one and the

same row twice,whereas another transaction updates (or deletes) this row between

these reads and commits the change. As a result, the first transaction gets different

results.

For example, suppose there is a consistency rule that forbids having a negative bal-

ance in bank accounts. The first transaction is going to reduce the account balance

by $���. It checks the current value, gets $�,���, and decides that this operation

is possible. At the same time, another transaction withdraws all the money from

this account and commits the changes. If the first transaction checked the bal-

ance again at this point, it would get $� (but the decision to withdraw the money

is already taken, and this operation causes an overdraft).

The standard allows non-repeatable reads at the Read Uncommitted and Read Com-

mitted levels.

Phantom Reads and Repeatable Read

The phantom read anomaly occurswhenone and the same transaction executes two

identical queries returning a set of rows that satisfy a particular condition, while

another transaction adds some other rows satisfying this condition and commits

the changes in the time interval between these queries. As a result, the first trans-

action gets two different sets of rows.

For example, suppose there is a consistency rule that forbids a customer to have

more than three accounts. The first transaction is going to open a new account,

so it checks how many accounts are currently available (let’s say there are two of

them) and decides that this operation is possible. At this very moment, the second

transaction also opens a new account for this client and commits the changes. If

the first transaction double-checked the number of open accounts, it would get

three (but it is already opening another account, and the client ends up having

four of them).

The standard allows phantom reads at the Read Uncommitted,Read Committed, and

Repeatable Read isolation levels.

49

Chapter 2 Isolation

No Anomalies and Serializable

The standard also defines the Serializable level, which does not allow any anoma-

lies. It is not the same as the ban on lost updates and dirty, non-repeatable, and

phantom reads. In fact, there is a much higher number of known anomalies than

the standard specifies, and an unknown number of still unknown ones.

The Serializable level must prevent any anomalies. It means that the application

developer does not have to take isolation into account. If transactions execute

correct operator sequences when run on their own, concurrent execution cannot

break data consistency either.

To illustrate this idea, I will use a well-known table provided in the standard; the

last column is added here for clarity:

lost dirty non-repeatable phantom other
update read read read anomalies

Read Uncommitted — yes yes yes yes

Read Committed — — yes yes yes

Repeatable Read — — — yes yes

Serializable — — — — —

Why These Anomalies?

Of all the possible anomalies, why does the standardmentions only some, and why

exactly these ones?

No one seems to know it for sure. But it is not unlikely that other anomalies were

simply not considered when the first versions of the standard were adopted, as

theory was far behind practice at that time.

Besides, it was assumed that isolation had to be based on locks. The widely used

two-phase locking protocol (���) requires transactions to lock the affected rows dur-

ing execution and release the locks upon completion. In simplistic terms, themore

locks a transaction acquires, the better it is isolated from other transactions. And

consequently, the worse is the system performance, as transactions start queuing

to get access to the same rows instead of running concurrently.

50

2.3 Isolation Levels in PostgreSQL

I believe that to a great extent the difference between the standard isolation levels

is defined by the number of locks required for their implementation.

If the rows to be updated are locked for writes but not for reads, we get the Read

Uncommitted isolation level, which allows reading data before it is committed.

If the rows to be updated are locked for both reads and writes, we get the Read

Committed level: it is forbidden to read uncommitted data, but a query can return

different values if it is run more than once (non-repeatable reads).

Locking the rows to be read and to be updated for all operations gives us the Re-

peatable Read level: a repeated query will return the same result.

However, the Serializable level poses a problem: it is impossible to lock a row that

does not exist yet. It leaves an opportunity for phantom reads to occur: a transac-

tion can add a row that satisfies the condition of the previous query, and this row

will appear in the next query result.

Thus, regular locks cannot provide full isolation: to achieve it, we have to lock con-

ditions (predicates) rather than rows. Such predicate locks were introduced as early

as ���� when System R was being developed; however, their practical applicability

is limited to simple conditions for which it is clear whether two different predicates

may conflict. As far as I know, predicate locks in their intended form p. ���have never

been implemented in any system.

2.3 Isolation Levels in PostgreSQL

Over time, lock-based protocols for transactionmanagement got replaced with the

Snapshot Isolation (��) protocol. The idea behind this approach is that each trans-

action accesses a consistent snapshot of data as it appeared at a particular point in

time. The snapshot includes all the current changes committed before the snap-

shot was taken.

Snapshot isolation minimizes the number of required locks. p. ���In fact, a row will be

locked only by concurrent update attempts. In all other cases, operations can be

executed concurrently: writes never lock reads, and reads never lock anything.

51

Chapter 2 Isolation

Postgre��� uses a multiversion flavor of the �� protocol. Multiversion concurrency

control implies that at any moment the database system can contain several ver-

sions of one and the same row, so Postgre��� can include an appropriate version

into the snapshot rather than abort transactions that attempt to read stale data.

Based on snapshots, Postgre��� isolation differs from the requirements specified

in the standard—in fact, it is even stricter. Dirty reads are forbidden by design.

Technically, you can specify theRead Uncommitted level, but its behavior will be the

same as that of Read Committed, so I am not going to mention this level anymore.

Repeatable Read allowsp. ��� neither non-repeatable nor phantom reads (even though

it does not guarantee full isolation). But in some cases, there is a risk of losing

changes at the Read Committed level.

lost dirty non-repeatable phantom other
updates reads reads reads anomalies

Read Committed yes — yes yes yes

Repeatable Read — — — — yes

Serializable — — — — —

Before exploring the internal mechanisms of isolation,p. �� let’s discuss each of the

three isolation levels from the user’s perspective.

For this purpose, we are going to create the accounts table; Alice and Bob will have

$�,��� each, but Bob will have two accounts:

=> CREATE TABLE accounts(

id integer PRIMARY KEY GENERATED BY DEFAULT AS IDENTITY,

client text,

amount numeric

);

=> INSERT INTO accounts VALUES

(1, 'alice', 1000.00), (2, 'bob', 100.00), (3, 'bob', 900.00);

Read Committed

No dirty reads. It is easy to check that reading dirty data is not allowed. Let’s start

a transaction. By default, it uses the Read Committed1 isolation level:

1 postgresql.org/docs/14/transaction-iso.html#XACT-READ-COMMITTED

52

https://postgresql.org/docs/14/transaction-iso.html#XACT-READ-COMMITTED

2.3 Isolation Levels in PostgreSQL

=> BEGIN;

=> SHOW transaction_isolation;

transaction_isolation

−−−−−−−−−−−−−−−−−−−−−−−

read committed

(1 row)

To be more exact, the default level is set by the following parameter, which can be

changed as required:

=> SHOW default_transaction_isolation;

default_transaction_isolation

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

read committed

(1 row)

The opened transactionwithdraws some funds from the customer account but does

not commit these changes yet. It will see its own changes though, as it is always

allowed:

=> UPDATE accounts SET amount = amount - 200 WHERE id = 1;

=> SELECT * FROM accounts WHERE client = 'alice';

id | client | amount

−−−−+−−−−−−−−+−−−−−−−−

1 | alice | 800.00

(1 row)

In the second session, we start another transaction that will also run at the Read

Committed level:

=> BEGIN;

=> SELECT * FROM accounts WHERE client = 'alice';

id | client | amount

−−−−+−−−−−−−−+−−−−−−−−−

1 | alice | 1000.00

(1 row)

Predictably, the second transaction does not see any uncommitted changes—dirty

reads are forbidden.

53

Chapter 2 Isolation

Non-repeatable reads. Now let the first transaction commit the changes. Then the

second transaction will repeat the same query:

=> COMMIT;

=> SELECT * FROM accounts WHERE client = 'alice';

id | client | amount

−−−−+−−−−−−−−+−−−−−−−−

1 | alice | 800.00

(1 row)

=> COMMIT;

The query receives an updated version of the data—and it is exactly what is under-

stood by the non-repeatable read anomaly, which is allowed at the Read Committed

level.

A practical insight: in a transaction, you must not take any decisions based on the

data read by the previous operator, as everything can change in between. Here is

an example whose variations appear in the application code so often that it can be

considered a classic anti-pattern:

IF (SELECT amount FROM accounts WHERE id = 1) >= 1000 THEN

UPDATE accounts SET amount = amount - 1000 WHERE id = 1;

END IF;

During the time that passes between the check and the update, other transactions

can freely change the state of the account, so such a “check” is absolutely useless.

For better understanding, you can imagine that random operators of other transac-

tions are “wedged” between the operators of the current transaction. For example,

like this:

IF (SELECT amount FROM accounts WHERE id = 1) >= 1000 THEN

UPDATE accounts SET amount = amount - 200 WHERE id = 1;

COMMIT;

UPDATE accounts SET amount = amount - 1000 WHERE id = 1;

END IF;

54

2.3 Isolation Levels in PostgreSQL

If everything goes wrong as soon as the operators are rearranged, then the code

is incorrect. Do not delude yourself that you will never get into this trouble: any-

thing that can go wrong will go wrong. Such errors are very hard to reproduce, and

consequently, fixing them is a real challenge.

How can you correct this code? There are several options:

• Replace procedural code with declarative one.

For example, in this particular case it is easy to turn an �� statement into a

����� constraint:

ALTER TABLE accounts

ADD CHECK amount >= 0;

Now you do not need any checks in the code: it is enough to simply run the

command and handle the exception that will be raised if an integrity con-

straint violation is attempted.

• Use a single ��� operator.

Data consistency can be compromised if a transaction gets committed within

the time gap between operators of another transaction, thus changing data

visibility. If there is only one operator, there are no such gaps.

Postgre��� has enough capabilities to solve complex tasks with a single ���

statement. In particular, it offers common table expressions (���) that can

contain operators like ������, ������, ������, as well as the ������ �� ��������

operator that implements the following logic: insert the row if it does not

exist, otherwise perform an update.

• Apply explicit locks.

The last resort is to manually set an exclusive lock on all the required rows p. ���

(������ ��� ������) or even on the whole table (���� �����) p. ���. This approach

always works, but it nullifies all the advantages of ����: some operations

that could be executed concurrently will run sequentially.

55

Chapter 2 Isolation

Read skew. However, it is not all that simple. The Postgre��� implementation

allows other, less known anomalies, which are not regulated by the standard.

Suppose the first transaction has started amoney transfer between Bob’s accounts:

=> BEGIN;

=> UPDATE accounts SET amount = amount - 100 WHERE id = 2;

Meanwhile, the other transaction starts looping through all Bob’s accounts to cal-

culate their total balance. It begins with the first account (seeing its previous state,

of course):

=> BEGIN;

=> SELECT amount FROM accounts WHERE id = 2;

amount

−−−−−−−−

100.00

(1 row)

At this moment, the first transaction completes successfully:

=> UPDATE accounts SET amount = amount + 100 WHERE id = 3;

=> COMMIT;

The second transaction reads the state of the second account (and sees the already

updated value):

=> SELECT amount FROM accounts WHERE id = 3;

amount

−−−−−−−−−

1000.00

(1 row)

=> COMMIT;

As a result, the second transaction gets $�,��� because it has read incorrect data.

Such an anomaly is called read skew.

How can you avoid this anomaly at the Read Committed level? The answer is obvi-

ous: use a single operator. For example, like this:

SELECT sum(amount) FROM accounts WHERE client = 'bob';

56

2.3 Isolation Levels in PostgreSQL

I have been stating so far that data visibility can change only between operators,

but is it really so? What if the query is running for a long time? Can it see different

parts of data in different states in this case?

Let’s check it out. A convenient way to do it is to add a delay to an operator by

calling the pg_sleep function. Then the first rowwill be read at once, but the second

row will have to wait for two seconds:

=> SELECT amount, pg_sleep(2) -- two seconds

FROM accounts WHERE client = 'bob';

While this statement is being executed, let’s start another transaction to transfer

the money back:

=> BEGIN;

=> UPDATE accounts SET amount = amount + 100 WHERE id = 2;

=> UPDATE accounts SET amount = amount - 100 WHERE id = 3;

=> COMMIT;

The result shows that the operator has seen all the data in the state that corre-

sponds to the beginning of its execution, which is certainly correct:

amount | pg_sleep

−−−−−−−−−+−−−−−−−−−−

0.00 |

1000.00 |

(2 rows)

But it is not all that simple either. If the query contains a function that is de-

clared ��������, and this function executes another query, then the data seen by

this nested query will not be consistent with the result of the main query.

Let’s check the balance in Bob’s accounts using the following function:

=> CREATE FUNCTION get_amount(id integer) RETURNS numeric

AS $$

SELECT amount FROM accounts a WHERE a.id = get_amount.id;

$$ VOLATILE LANGUAGE sql;

=> SELECT get_amount(id), pg_sleep(2)

FROM accounts WHERE client = 'bob';

We will transfer the money between the accounts once again while our delayed

query is being executed:

57

Chapter 2 Isolation

=> BEGIN;

=> UPDATE accounts SET amount = amount + 100 WHERE id = 2;

=> UPDATE accounts SET amount = amount - 100 WHERE id = 3;

=> COMMIT;

In this case, we are going to get inconsistent data—$��� has been lost:

get_amount | pg_sleep

−−−−−−−−−−−−+−−−−−−−−−−

100.00 |

800.00 |

(2 rows)

I would like to emphasize that this effect is possible only at the Read Committed

isolation level, and only if the function is ��������. The trouble is that Postgre���

uses exactly this isolation level and this volatility category by default. So we have

to admit that the trap is set in a very cunning way.

Read skew instead of lost updates. The read skew anomaly can also occur within a

single operator during an update—even though in a somewhat unexpected way.

Let’s see what happens if two transactions try to modify one and the same row.

Bob currently has a total of $�,��� in two accounts:

=> SELECT * FROM accounts WHERE client = 'bob';

id | client | amount

−−−−+−−−−−−−−+−−−−−−−−

2 | bob | 200.00

3 | bob | 800.00

(2 rows)

Start a transaction that will reduce Bob’s balance:

=> BEGIN;

=> UPDATE accounts SET amount = amount - 100 WHERE id = 3;

At the same time, the other transaction will be calculating the interest for all cus-

tomer accounts with the total balance of $�,��� or more:

58

2.3 Isolation Levels in PostgreSQL

=> UPDATE accounts SET amount = amount * 1.01

WHERE client IN (

SELECT client

FROM accounts

GROUP BY client

HAVING sum(amount) >= 1000

);

The ������ operator execution virtually consists of two stages. First, the rows to be

updated are selected based on the provided condition. Since the first transaction

is not committed yet, the second transaction cannot see its result, so the selection

of rows picked for interest accrual is not affected. Thus, Bob’s accounts satisfy the

condition, and his balance must be increased by $�� once the ������ operation

completes.

At the second stage, the selected rows are updated one by one. The second trans-

action has to wait because the row with id = 3 is locked: it is being updated by the

first transaction.

Meanwhile, the first transaction commits its changes:

=> COMMIT;

=> SELECT * FROM accounts WHERE client = 'bob';

id | client | amount

−−−−+−−−−−−−−+−−−−−−−−−−

2 | bob | 202.0000

3 | bob | 707.0000

(2 rows)

On the one hand, the ������ command must not see any changes made by the first

transaction. But on the other hand, it must not lose any committed changes.

Once the lock is released, the ������ operator re-reads p. ���the row to be updated (but

only this row!). As a result, Bob gets $� of interest, based on the total of $���. But

if he had $���, his accounts should not have been included into the query results

in the first place.

Thus, our transaction has returned incorrect data: different rows have been read

from different snapshots. Instead of a lost update, we observe the read skew

anomaly again.

59

Chapter 2 Isolation

Lost updates. However, the trick of re-reading the locked rowwill not help against

lost updates if the data is modified by different ��� operators.

Here is an example that we have already seen.p. �� The application reads and registers

(outside of the database) the current balance of Alice’s account:

=> BEGIN;

=> SELECT amount FROM accounts WHERE id = 1;

amount

−−−−−−−−

800.00

(1 row)

Meanwhile, the other transaction does the same:

=> BEGIN;

=> SELECT amount FROM accounts WHERE id = 1;

amount

−−−−−−−−

800.00

(1 row)

Thefirst transaction increases the previously registered value by $��� and commits

this change:

=> UPDATE accounts SET amount = 800.00 + 100 WHERE id = 1

RETURNING amount;

amount

−−−−−−−−

900.00

(1 row)

UPDATE 1

=> COMMIT;

The second transaction does the same:

=> UPDATE accounts SET amount = 800.00 + 100 WHERE id = 1

RETURNING amount;

amount

−−−−−−−−

900.00

(1 row)

UPDATE 1

60

2.3 Isolation Levels in PostgreSQL

=> COMMIT;

Unfortunately, Alice has lost $���. The database system does not know that the

registered value of $��� is somehow related to accounts.amount, so it cannot pre-

vent the lost update anomaly. At the Read Committed isolation level, this code is

incorrect.

Repeatable Read

No non-repeatable and phantom reads. As its name suggests, the Repeatable Read1

isolation level must guarantee repeatable reading. Let’s check it and make sure

that phantom reads cannot occur either. For this purpose, we are going to start a

transaction that will revert Bob’s accounts to their previous state and create a new

account for Charlie:

=> BEGIN;

=> UPDATE accounts SET amount = 200.00 WHERE id = 2;

=> UPDATE accounts SET amount = 800.00 WHERE id = 3;

=> INSERT INTO accounts VALUES

(4, 'charlie', 100.00);

=> SELECT * FROM accounts ORDER BY id;

id | client | amount

−−−−+−−−−−−−−−+−−−−−−−−

1 | alice | 900.00

2 | bob | 200.00

3 | bob | 800.00

4 | charlie | 100.00

(4 rows)

In the second session, let’s start another transaction,with theRepeatable Read level

explicitly specified in the ����� command (the level of the first transaction is not

important):

=> BEGIN ISOLATION LEVEL REPEATABLE READ;

=> SELECT * FROM accounts ORDER BY id;

1 postgresql.org/docs/14/transaction-iso.html#XACT-REPEATABLE-READ

61

https://postgresql.org/docs/14/transaction-iso.html#XACT-REPEATABLE-READ

Chapter 2 Isolation

id | client | amount

−−−−+−−−−−−−−+−−−−−−−−−−

1 | alice | 900.00

2 | bob | 202.0000

3 | bob | 707.0000

(3 rows)

Now the first transaction commits its changes, and the second transaction repeats

the same query:

=> COMMIT;

=> SELECT * FROM accounts ORDER BY id;

id | client | amount

−−−−+−−−−−−−−+−−−−−−−−−−

1 | alice | 900.00

2 | bob | 202.0000

3 | bob | 707.0000

(3 rows)

=> COMMIT;

The second transaction still sees the same data as before: neither new rows nor row

updates are visible. At this isolation level, you do not have to worry that something

will change between operators.

Serialization failures instead of lost updates. As we have already seenp. �� , if two trans-

actions update one and the same row at the Read Committed level, it can cause the

read skew anomaly: the waiting transaction has to re-read the locked row, so it

sees the state of this row at a different point in time as compared to other rows.

Such an anomaly is not allowed at the Repeatable Read isolation level, and if it does

happen, the transaction can only be abortedwith a serialization failure. Let’s check

it�� out�� b��y�� repeating�� the�� sc�� enario�� with�� interest�� ac�� crual:

=> SELECT * FROM accounts WHERE client = 'bob';

id | client | amount

−−−−+−−−−−−−−+−−−−−−−−

2 | bob | 200.00

3 | bob | 800.00

(2 rows)

=> BEGIN;

62

2.3 Isolation Levels in PostgreSQL

=> UPDATE accounts SET amount = amount - 100.00 WHERE id = 3;

=> BEGIN ISOLATION LEVEL REPEATABLE READ;

=> UPDATE accounts SET amount = amount * 1.01

WHERE client IN (

SELECT client

FROM accounts

GROUP BY client

HAVING sum(amount) >= 1000

);

=> COMMIT;

ERROR: could not serialize access due to concurrent update

=> ROLLBACK;

The data remains consistent:

=> SELECT * FROM accounts WHERE client = 'bob';

id | client | amount

−−−−+−−−−−−−−+−−−−−−−−

2 | bob | 200.00

3 | bob | 700.00

(2 rows)

The same error will be raised by any concurrent row updates, even if they affect

different columns.

We will also get this error if we try to update the balance based on the previously

stored value:

=> BEGIN ISOLATION LEVEL REPEATABLE READ;

=> SELECT amount FROM accounts WHERE id = 1;

amount

−−−−−−−−

900.00

(1 row)

=> BEGIN ISOLATION LEVEL REPEATABLE READ;

63

Chapter 2 Isolation

=> SELECT amount FROM accounts WHERE id = 1;

amount

−−−−−−−−

900.00

(1 row)

=> UPDATE accounts SET amount = 900.00 + 100.00 WHERE id = 1

RETURNING amount;

amount

−−−−−−−−−

1000.00

(1 row)

UPDATE 1

=> COMMIT;

=> UPDATE accounts SET amount = 900.00 + 100.00 WHERE id = 1

RETURNING amount;

ERROR: could not serialize access due to concurrent update

=> ROLLBACK;

A practical insight: if your application is using the Repeatable Read isolation level

for write transactions, it must be ready to retry transactions that have been com-

pleted with a serialization failure. For read-only transactions, such an outcome is

impossible.

Write skew. As we have seen, the Postgre��� implementation of the Repeatable

Read isolation level prevents all the anomalies described in the standard. But not

all possible ones: no one knows how many of them exist. However, one important

fact is proved for sure: snapshot isolation does not prevent only two anomalies, no

matter how many other anomalies are out there.

The first one is write skew.

Let’s define the following consistency rule: it is allowed to have a negative balance

in some of the customer’s accounts as long as the total balance is non-negative.

The first transaction gets the total balance of Bob’s accounts:

=> BEGIN ISOLATION LEVEL REPEATABLE READ;

64

2.3 Isolation Levels in PostgreSQL

=> SELECT sum(amount) FROM accounts WHERE client = 'bob';

sum

−−−−−−−−

900.00

(1 row)

The second transaction gets the same sum:

=> BEGIN ISOLATION LEVEL REPEATABLE READ;

=> SELECT sum(amount) FROM accounts WHERE client = 'bob';

sum

−−−−−−−−

900.00

(1 row)

The first transaction fairly assumes that it can debit one of the accounts by $���:

=> UPDATE accounts SET amount = amount - 600.00 WHERE id = 2;

The second transaction comes to the same conclusion, but debits the other ac-

count:

=> UPDATE accounts SET amount = amount - 600.00 WHERE id = 3;

=> COMMIT;

=> COMMIT;

=> SELECT * FROM accounts WHERE client = 'bob';

id | client | amount

−−−−+−−−−−−−−+−−−−−−−−−

2 | bob | −400.00

3 | bob | 100.00

(2 rows)

Bob’s total balance is now negative, although both transactions would have been

correct if run separately.

Read-only transaction anomaly. The read-only transaction anomaly is the second

and the last one allowed at the Repeatable Read isolation level. To observe this

anomaly, we have to run three transactions: two of them are going to update the

data, while the third one will be read-only.

65

Chapter 2 Isolation

But first let’s restore Bob’s balance:

=> UPDATE accounts SET amount = 900.00 WHERE id = 2;

=> SELECT * FROM accounts WHERE client = 'bob';

id | client | amount

−−−−+−−−−−−−−+−−−−−−−−

3 | bob | 100.00

2 | bob | 900.00

(2 rows)

The first transaction calculates the interest to be accrued on Bob’s total balance

and adds this sum to one of his accounts:

=> BEGIN ISOLATION LEVEL REPEATABLE READ; -- 1

=> UPDATE accounts SET amount = amount + (

SELECT sum(amount) FROM accounts WHERE client = 'bob'

) * 0.01

WHERE id = 2;

Then the second transaction withdraws somemoney from Bob’s other account and

commits this change:

=> BEGIN ISOLATION LEVEL REPEATABLE READ; -- 2

=> UPDATE accounts SET amount = amount - 100.00 WHERE id = 3;

=> COMMIT;

If the first transaction gets committed at this point, there will be no anomalies: we

could assume that the first transaction is committed before the second one (but not

vice versa—the first transaction had seen the state of account with id = 3 before any

updates were made by the second transaction).

But let’s imagine that at this very moment we start a ready-only transaction to

query an account that is not affected by the first two transactions:

=> BEGIN ISOLATION LEVEL REPEATABLE READ; -- 3

=> SELECT * FROM accounts WHERE client = 'alice';

id | client | amount

−−−−+−−−−−−−−+−−−−−−−−−

1 | alice | 1000.00

(1 row)

And only now will the first transaction get committed:

66

2.3 Isolation Levels in PostgreSQL

=> COMMIT;

Which state should the third transaction see at this point? Having started, it could

see the changes made by the second transaction (which had already been commit-

ted), but not by the first one (which had not been committed yet). But as we have

already established, the second transaction should be treated as if it were started

after the first one. Any state seen by the third transactionwill be inconsistent—this

is exactly what is meant by the read-only transaction anomaly:

=> SELECT * FROM accounts WHERE client = 'bob';

id | client | amount

−−−−+−−−−−−−−+−−−−−−−−

2 | bob | 900.00

3 | bob | 0.00

(2 rows)

=> COMMIT;

Serializable

The Serializable1 isolation level prevents all possible anomalies. This level is vir-

tually built on top of snapshot isolation. Those anomalies that do not occur at the

Repeatable Read isolation level (such as dirty, non-repeatable, or phantom reads)

cannot occur at the Serializable level either. And those two anomalies that do occur

(write skew and read-only transaction anomalies) get detected in a special way to

abort the transaction, causing an already familiar serialization failure.

No anomalies. Let’s make sure that our write skew scenario p. ��will eventually end

with a serialization failure:

=> BEGIN ISOLATION LEVEL SERIALIZABLE;

=> SELECT sum(amount) FROM accounts WHERE client = 'bob';

sum

−−−−−−−−−−

910.0000

(1 row)

1 postgresql.org/docs/14/transaction-iso.html#XACT-SERIALIZABLE

67

https://postgresql.org/docs/14/transaction-iso.html#XACT-SERIALIZABLE

Chapter 2 Isolation

=> BEGIN ISOLATION LEVEL SERIALIZABLE;

=> SELECT sum(amount) FROM accounts WHERE client = 'bob';

sum

−−−−−−−−−−

910.0000

(1 row)

=> UPDATE accounts SET amount = amount - 600.00 WHERE id = 2;

=> UPDATE accounts SET amount = amount - 600.00 WHERE id = 3;

=> COMMIT;

COMMIT

=> COMMIT;

ERROR: could not serialize access due to read/write dependencies

among transactions

DETAIL: Reason code: Canceled on identification as a pivot, during

commit attempt.

HINT: The transaction might succeed if retried.

The scenario with the read-only transaction anomaly will lead to the same error.

Deferring a read-only transaction. To avoid situations when a read-only transac-

tion can cause an anomaly that compromises data consistency, Postgre��� offers

an interesting solution: this transaction can be deferred until its execution be-

comes safe. It is the only case when a ������ statement can be blocked by row

updates.

We are going to check it out by repeating the scenario that demonstrated the read-

only transaction anomaly:

=> UPDATE accounts SET amount = 900.00 WHERE id = 2;

=> UPDATE accounts SET amount = 100.00 WHERE id = 3;

=> SELECT * FROM accounts WHERE client = 'bob' ORDER BY id;

id | client | amount

−−−−+−−−−−−−−+−−−−−−−−

2 | bob | 900.00

3 | bob | 100.00

(2 rows)

=> BEGIN ISOLATION LEVEL SERIALIZABLE; -- 1

68

2.3 Isolation Levels in PostgreSQL

=> UPDATE accounts SET amount = amount + (

SELECT sum(amount) FROM accounts WHERE client = 'bob'

) * 0.01

WHERE id = 2;

=> BEGIN ISOLATION LEVEL SERIALIZABLE; -- 2

=> UPDATE accounts SET amount = amount - 100.00 WHERE id = 3;

=> COMMIT;

Let’s explicitly declare the third transaction as ���� ���� and ����������:

=> BEGIN ISOLATION LEVEL SERIALIZABLE READ ONLY DEFERRABLE; -- 3

=> SELECT * FROM accounts WHERE client = 'alice';

An attempt to run the query blocks the transaction—otherwise, it would have

caused an anomaly.

And only when the first transaction is committed, the third one can continue its

execution:

=> COMMIT;

id | client | amount

−−−−+−−−−−−−−+−−−−−−−−−

1 | alice | 1000.00

(1 row)

=> SELECT * FROM accounts WHERE client = 'bob';

id | client | amount

−−−−+−−−−−−−−+−−−−−−−−−−

2 | bob | 910.0000

3 | bob | 0.00

(2 rows)

=> COMMIT;

Thus, if an application uses the Serializable isolation level, it must be ready to retry

transactions that have ended with a serialization failure. (The Repeatable Read

level requires the same approach unless the application is limited to read-only

transactions.)

The Serializable isolation level brings ease of programming, but the price you pay

is the overhead incurred by anomaly detection and forced termination of a certain

69

Chapter 2 Isolation

fraction of transactions. You can lower this impact by explicitly using the ����

���� clause when declaring read-only transactions. But the main questions is, of

course, how big the fraction of aborted transactions is—since these transactions

will have to be retried. It would have been not so bad if Postgre��� aborted only

those transactions that result in data conflicts and are really incompatible. But

such an approach would inevitably be too resource-intensive, as it would involve

tracking operations on each row.

The current implementationp. ��� allows false positives: Postgre��� can abort some ab-

solutely safe transactions that are simply out of luck. Their “luck” depends on

many factors, such as the presence of appropriate indexes or the amount of ���

available, so the actual behavior is hard to predict in advance.

If you use the Serializable level, it must be observed by all transactions of the ap-

plication. When combined with other levels, Serializable behaves as Repeatable

Read without any notice. So if you decide to use the Serializable level, it makes

sense to modify theread

committed

default_transaction_isolation parameter value accordingly—

even though someone can still overwrite it by explicitly setting a different level.

There are also other restrictions;v. �� for example, queries run at the Serializable level

cannot be executed on replicas. And although the functionality of this level is

constantly being improved, the current limitations and overhead make it less at-

tractive.

2.4 Which Isolation Level to Use?

Read Committed is the default isolation level in Postgre���, and apparently it is this

level that is used in the vast majority of applications. This level can be convenient

because it allows aborting transactions only in case of a failure; it does not abort

any transactions to preserve data consistency. In otherwords, serialization failures

cannot occur, so you do not have to take care of transaction retries.

The downside of this level is a large number of possible anomalies, which have

been discussed in detail above. A developer has to keep them in mind all the time

and write the code in a way that prevents their occurrence. If it is impossible to

define all the needed actions in a single ��� statement, then you have to resort

to explicit locking. The toughest part is that the code is hard to test for errors

70

2.4 Which Isolation Level to Use?

related to data inconsistency; such errors can appear in unpredictable and barely

reproducible ways, so they are very hard to fix too.

The Repeatable Read isolation level eliminates some of the inconsistency prob-

lems, but alas, not all of them. Therefore, you must not only remember about the

remaining anomalies, but also modify the application to correctly handle serializa-

tion failures, which is certainly inconvenient. However, for read-only transactions

this level is a perfect complement to the Read Committed level; it can be very useful

for cases like building reports that involve multiple ��� queries.

And finally, the Serializable isolation level allows you not to worry about data con-

sistency at all, which simplifies writing the code to a great extent. The only thing

required from the application is the ability to retry any transaction that is aborted

with a serialization failure. However, the number of aborted transactions and as-

sociated overhead can significantly reduce system throughput. You should also

keep in mind that the Serializable level is not supported on replicas and cannot be

combined with other isolation levels.

71

3
Pages and Tuples

3.1 Page Structure

Each page has a certain inner layout that usually consists of the following parts:1

• page header

• an array of item pointers

• free space

• items (row versions)

• special space

Page Header

The page header is located in the lowest addresses and has a fixed size. It stores

various information about the pagep. ��� , such as its checksum and the sizes of all the

other parts of the page.

These sizes can be easily displayed using the pageinspect extension.2 Let’s take a

look at the first page of the table (page numbering is zero-based):

1 postgresql.org/docs/14/storage-page-layout.html

include/storage/bufpage.h
2 postgresql.org/docs/14/pageinspect.html

72

https://postgresql.org/docs/14/storage-page-layout.html
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/include/storage/bufpage.h;hb=REL_14_STABLE
https://postgresql.org/docs/14/pageinspect.html

3.1 Page Structure

=> CREATE EXTENSION pageinspect;

=> SELECT lower, upper, special, pagesize

FROM page_header(get_raw_page('accounts',0));

lower | upper | special | pagesize

−−−−−−−+−−−−−−−+−−−−−−−−−+−−−−−−−−−−

152 | 6904 | 8192 | 8192

(1 row)

header

an array of item pointers

free space

items

special space

0

24

lower

upper

special

pagesize

Special Space

The special space is located in the opposite part of the page, taking its highest ad-

dresses. It is used by some indexes to store auxiliary information; in other indexes

and table pages this space is zero-sized.

In general, the layout of index pages is quite diverse; their content largely depends

on a particular index type. Even one and the same index can have different kinds

of pages: for example, �-trees have a metadata page of a special structure (page

zero) and regular pages that are very similar to table pages.

Tuples

Rows contain the actual data stored in the database, together with some additional

information. They are located just before the special space.

73

Chapter 3 Pages and Tuples

In the case of tables, we have to deal with row versions rather than rows because

multiversion concurrency control implies having several versions of one and the

same row. Indexes do not use this ���� mechanism; instead, they have to ref-

erence all the available row versions, falling back on visibility rules to select the

appropriate ones.

Both table row versions and index entries are often referred to as tuples. This term is

borrowed from the relational theory—it is yet another legacy of Postgre���’s academic

past.

Item Pointers

The array of pointers to tuples serves as the page’s table of contents. It is located

right after the header.

Index entries have to refer to particular heap tuples somehow. Postgre��� em-

ploys six-byte tuple identifiers (���s) for this purpose. Each ��� consists of the page

number of the main forkp. �� and a reference to a particular row version located in this

page.

In theory, tuples could be referred to by their offset from the start of the page. But

then it would be impossible to move tuples within pages without breaking these

references, which in turn would lead to page fragmentation and other unpleasant

consequences.

For this reason, Postgre��� uses indirect addressing: a tuple identifier refers to the

corresponding pointer number, and this pointer specifies the current offset of the

tuple. If the tuple is moved within the page, its ��� still remains the same; it is

enough to modify the pointer, which is also located in this page.

Each pointer takes exactly four bytes and contains the following data:

• tuple offset from the start of the page

• tuple length

• several bits defining the tuple status

74

3.2 Row Version Layout

Free Space

Pages can have some free space left between pointers and tuples (which is reflected

in the free spacemap p. ��). There is no page fragmentation: all the free space available

is always aggregated into one chunk.1

3.2 Row Version Layout

Each row version contains a header followed by actual data. The header consists

of multiple fields, including the following:

xmin, xmax represent transaction ��s; they are used to differentiate between this

and other versions of one and the same row.

infomask provides a set of information bits that define version properties.

ctid is a pointer to the next updated version of the same row.

null bitmap is an array of bits marking the columns that can contain ���� values.

As a result, the header turns out quite big: it requires at least �� bytes for each tu-

ple, and this value is often exceeded because of the null bitmap and the mandatory

padding used for data alignment. In a “narrow” table, the size of various metadata

can easily beat the size of the actual data stored.

Data layout on disk fully coincideswith data representation in ���. The page along

with its tuples is read into the buffer cache as is, without any transformations.

That’s why data files are incompatible between different platforms.2

One of the sources of incompatibility is the byte order. For example, the x�� ar-

chitecture is little-endian, z/�rchitecture is big-endian, and ��� has configurable

byte order.

Another reason is data alignment by machine word boundaries, which is required

by many architectures. For example, in a ��-bit x�� system, integer numbers (the

integer type, takes four bytes) are aligned by the boundary of four-byte words,

1 backend/storage/page/bufpage.c, PageRepairFragmentation function
2 include/access/htup_details.h

75

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/storage/page/bufpage.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/include/access/htup_details.h;hb=REL_14_STABLE

Chapter 3 Pages and Tuples

just like double-precision floating-point numbers (the double precision type, eight

bytes). But in a ��-bit system, double values are aligned by the boundary of eight-

byte words.

Data alignment makes the size of a tuple dependent on the order of fields in the

table. This effect is usually negligible, but in some cases it can lead to a significant

size increase. Here is an example:

=> CREATE TABLE padding(

b1 boolean,

i1 integer,

b2 boolean,

i2 integer

);

=> INSERT INTO padding VALUES (true,1,false,2);

=> SELECT lp_len FROM heap_page_items(get_raw_page('padding', 0));

lp_len

−−−−−−−−

40

(1 row)

I have used the heap_page_items function of the pageinspect extension to display

some details about pointers and tuples.

In Postgre���, tables are often referred to as heap. This is yet another obscure term that

hints at the similarity between space allocation for tuples and dynamic memory alloca-

tion. Some analogy can certainly be seen, but tables are managed by completely different

algorithms. We can interpret this term in the sense that “everything is piled up into a heap,”

by contrast with ordered indexes.

The size of the row is �� bytes. Its header takes �� bytes, a column of the integer

type takes � bytes, and boolean columns take � byte each. It makes �� bytes, and �

bytes are wasted on four-byte alignment of integer columns.

If we rebuild the table, the space will be used more efficiently:

=> DROP TABLE padding;

=> CREATE TABLE padding(

i1 integer,

i2 integer,

b1 boolean,

b2 boolean

);

76

3.3 Operations on Tuples

=> INSERT INTO padding VALUES (1,2,true,false);

=> SELECT lp_len FROM heap_page_items(get_raw_page('padding', 0));

lp_len

−−−−−−−−

34

(1 row)

Another possible micro-optimization is to start the table with the fixed-length

columns that cannot contain ���� values. Access to such columns will be more

efficient because it is possible to cache their offset within the tuple.1

3.3 Operations on Tuples

To identify different versions of one and the same row, Postgre��� marks each of

them with two values: xmin and xmax. These values define “validity time” of each

row version, but instead of the actual time, they rely on ever-increasing transaction

��s. p. ���

When a row is created, its xmin value is set to the transaction �� of the ������ com-

mand.

When a row is deleted, the xmax value of its current version is set to the transaction

�� of the ������ command.

With a certain degree of abstraction, the ������ command can be regarded as

two separate operations: ������ and ������. First, the xmax value of the current

row version is set to the transaction �� of the ������ command. Then a new ver-

sion of this row is created; its xmin value will be the same as the xmax value of the

previous version.

Now let’s get down to some low-level details of different operations on tuples.2

For these experiments, we will need a two-column table with an index created on

one of the columns:

1 backend/access/common/heaptuple.c, heap_deform_tuple function
2 backend/access/transam/README

77

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/common/heaptuple.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/transam/README;hb=REL_14_STABLE

Chapter 3 Pages and Tuples

=> CREATE TABLE t(

id integer GENERATED ALWAYS AS IDENTITY,

s text

);

=> CREATE INDEX ON t(s);

Insert

Start a transaction and insert one row:

=> BEGIN;

=> INSERT INTO t(s) VALUES ('FOO');

Here is the current transaction ��:

=> -- txid_current() before v.13

SELECT pg_current_xact_id();

pg_current_xact_id

−−−−−−−−−−−−−−−−−−−−

776

(1 row)

To denote the concept of a transaction, Postgre��� uses the term xact, which can be found

both in ��� function names and in the source code. Consequently, a transaction �� can be

called xact ��, ����, or simply ���. We are going to come across these abbreviations over

and over again.

Let’s take a look at the page contents. The heap_page_items function can give us

all the required information, but it shows the data “as is,” so the output format is

a bit hard to comprehend:

=> SELECT *

FROM heap_page_items(get_raw_page('t',0)) \gx

−[RECORD 1]−−−−−−−−−−−−−−−−−−−

lp | 1

lp_off | 8160

lp_flags | 1

lp_len | 32

t_xmin | 776

t_xmax | 0

t_field3 | 0

t_ctid | (0,1)

78

3.3 Operations on Tuples

t_infomask2 | 2

t_infomask | 2050

t_hoff | 24

t_bits |

t_oid |

t_data | \x0100000009464f4f

To make it more readable, we can leave out some information and expand a few

columns:

=> SELECT '(0,'||lp||')' AS ctid,

CASE lp_flags

WHEN 0 THEN 'unused'

WHEN 1 THEN 'normal'

WHEN 2 THEN 'redirect to '||lp_off

WHEN 3 THEN 'dead'

END AS state,

t_xmin as xmin,

t_xmax as xmax,

(t_infomask & 256) > 0 AS xmin_committed,

(t_infomask & 512) > 0 AS xmin_aborted,

(t_infomask & 1024) > 0 AS xmax_committed,

(t_infomask & 2048) > 0 AS xmax_aborted

FROM heap_page_items(get_raw_page('t',0)) \gx

−[RECORD 1]−−+−−−−−−−

ctid | (0,1)

state | normal

xmin | 776

xmax | 0

xmin_committed | f

xmin_aborted | f

xmax_committed | f

xmax_aborted | t

This is what has been done here:

• The lp pointer is converted to the standard format of a tuple ��: (page number,

pointer number).

• The lp_flags state is spelled out. Here it is set to the normal value,whichmeans

that it really points to a tuple.

• Of all the information bits, we have singled out just two pairs so far. The

xmin_committed and xmin_aborted bits show whether the xmin transaction is

79

Chapter 3 Pages and Tuples

committed or aborted. The xmax_committed and xmax_aborted bits give simi-

lar information about the xmax transaction.

The pageinspectv. �� extension provides the heap_tuple_infomask_flags function that explains

all the information bits, but I am going to retrieve only those that are required at the

moment, showing them in a more concise form.

Let’s get back to our experiment. The ������ command has added pointer � to the

heap page; it refers to the first tuple, which is currently the only one.

The xmin field of the tuple is set to the current transaction ��. This transaction is

still active, so the xmin_committed and xmin_aborted bits are not set yet.

The xmax field contains �, which is a dummy number showing that this tuple has

not been deleted and represents the current version of the row. Transactions will

ignore this number because the xmax_aborted bit is set.

It may seem strange that the bit corresponding to an aborted transaction is set for the

transaction that has not happened yet. But there is no difference between such transac-

tions from the isolation standpoint: an aborted transaction leaves no trace, hence it has

never existed.

Wewill use this querymore than once, so I am going to wrap it into a function. And

while being at it, I will alsomake the outputmore concise by hiding the information

bit columns and displaying the status of transactions together with their ��s.

=> CREATE FUNCTION heap_page(relname text, pageno integer)

RETURNS TABLE(ctid tid, state text, xmin text, xmax text)

AS $$

SELECT (pageno,lp)::text::tid AS ctid,

CASE lp_flags

WHEN 0 THEN 'unused'

WHEN 1 THEN 'normal'

WHEN 2 THEN 'redirect to '||lp_off

WHEN 3 THEN 'dead'

END AS state,

t_xmin || CASE

WHEN (t_infomask & 256) > 0 THEN ' c'

WHEN (t_infomask & 512) > 0 THEN ' a'

ELSE ''

END AS xmin,

80

3.3 Operations on Tuples

t_xmax || CASE

WHEN (t_infomask & 1024) > 0 THEN ' c'

WHEN (t_infomask & 2048) > 0 THEN ' a'

ELSE ''

END AS xmax

FROM heap_page_items(get_raw_page(relname,pageno))

ORDER BY lp;

$$ LANGUAGE sql;

Now it is much clearer what is happening in the tuple header:

=> SELECT * FROM heap_page('t',0);

ctid | state | xmin | xmax

−−−−−−−+−−−−−−−−+−−−−−−+−−−−−−

(0,1) | normal | 776 | 0 a

(1 row)

You can get similar but less detailed information from the table itself by querying

the xmin and xmax pseudocolumns:

=> SELECT xmin, xmax, * FROM t;

xmin | xmax | id | s

−−−−−−+−−−−−−+−−−−+−−−−−

776 | 0 | 1 | FOO

(1 row)

Commit

Once a transaction has been completed successfully, its status has to be stored

somehow—it must be registered that the transaction is committed. For this pur-

pose, Postgre��� employs a special ���� (commit log) structure.1 It is stored as

files in the ������/pg_xact directory rather than as a system catalog table.

Previously, these files were located in ������/pg_clog, but in version �� this directory got

renamed:2 it was not uncommon for database administrators unfamiliar with Postgre���

to delete it in search of free disk space, thinking that a “log” is something unnecessary.

1 include/access/clog.h

backend/access/transam/clog.c
2 commitfest.postgresql.org/13/750

81

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/include/access/clog.h;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/transam/clog.c;hb=REL_14_STABLE
https://commitfest.postgresql.org/13/750

Chapter 3 Pages and Tuples

C��� is split into several files solely for convenience.p. ��� These files are accessed page

by page via buffers in the server’s shared memory.1

Just like a tuple header, ���� contains two bits for each transaction: committed

and aborted.

Once committed, a transaction is marked in ���� with the committed bit. When

any other transaction accesses a heap page, it has to answer the question: has the

xmin transaction already finished?

• If not, then the created tuple must not be visible.

To check whether the transaction is still active, Postgre��� uses yet another

structure located in the shared memory of the instance; it is called ProcArray.

This structure contains the list of all the active processes,with the correspond-

ing current (active) transaction specified for each process.

• If yes,was it committed or aborted? In the latter case, the corresponding tuple

cannot be visible either.

It is this check that requires ����. But even though the most recent ����

pages are stored in memory buffers, it is still expensive to perform this check

every time. Once determined, the transaction status is written into the tuple

header—more specifically, into xmin_committed and xmin_aborted information

bits, which are also called hint bits. If one of these bits is set, then the xmin

transaction status is considered to be already known, and the next transaction

will have to access neither ���� nor ProcArray.

Why aren’t these bits set by the transaction that performs row insertion? The prob-

lem is that it is not known yet at that time whether this transaction will complete

successfully. Andwhen it is committed, it is already unclearwhich tuples and pages

have been changed. If a transaction affects many pages, it may be too expensive to

track them. Besides, some of these pagesmay be not in the cache anymore; reading

them again to simply update the hint bits would seriously slow down the commit.

1 backend/access/transam/clog.c

82

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/transam/clog.c;hb=REL_14_STABLE

3.3 Operations on Tuples

The flip side of this cost reduction is that any transaction (even a read-only ������

command) can start setting hint bits, thus leaving a trail of dirtied pages in the

buffer cache.

Finally, let’s commit the transaction started with the ������ statement:

=> COMMIT;

Nothing has changed in the page (but we know that the transaction status has al-

ready been written into ����):

=> SELECT * FROM heap_page('t',0);

ctid | state | xmin | xmax

−−−−−−−+−−−−−−−−+−−−−−−+−−−−−−

(0,1) | normal | 776 | 0 a

(1 row)

Now the first transaction that accesses the page (in a“standard”way,without using

pageinspect) has to determine the status of the xmin transaction and update the

hint bits:

=> SELECT * FROM t;

id | s

−−−−+−−−−−

1 | FOO

(1 row)

=> SELECT * FROM heap_page('t',0);

ctid | state | xmin | xmax

−−−−−−−+−−−−−−−−+−−−−−−−+−−−−−−

(0,1) | normal | 776 c | 0 a

(1 row)

Delete

When a row is deleted, the xmax field of its current version is set to the transaction

�� that performs the deletion, and the xmax_aborted bit is unset.

83

Chapter 3 Pages and Tuples

While this transaction is active, the xmaxp. ��� value serves as a row lock. If another transaction

is going to update or delete this row, it will have to wait until the xmax transaction is

complete.

Let’s delete a row:

=> BEGIN;

=> DELETE FROM t;

=> SELECT pg_current_xact_id();

pg_current_xact_id

−−−−−−−−−−−−−−−−−−−−

777

(1 row)

The transaction �� has already been written into the xmax field, but the informa-

tion bits have not been set yet:

=> SELECT * FROM heap_page('t',0);

ctid | state | xmin | xmax

−−−−−−−+−−−−−−−−+−−−−−−−+−−−−−−

(0,1) | normal | 776 c | 777

(1 row)

Abort

The mechanism of aborting a transaction is similar to that of commit and happens

just as fast, but instead of committed it sets the aborted bit in ����. Although the

corresponding command is called ��������, no actual data rollback is happening:

all the changes made by the aborted transaction in data pages remain in place.

=> ROLLBACK;

=> SELECT * FROM heap_page('t',0);

ctid | state | xmin | xmax

−−−−−−−+−−−−−−−−+−−−−−−−+−−−−−−

(0,1) | normal | 776 c | 777

(1 row)

84

3.3 Operations on Tuples

When the page is accessed, the transaction status is checked, and the tuple receives

the xmax_aborted hint bit. The xmax number itself still remains in the page, but

no one is going to pay attention to it anymore:

=> SELECT * FROM t;

id | s

−−−−+−−−−−

1 | FOO

(1 row)

=> SELECT * FROM heap_page('t',0);

ctid | state | xmin | xmax

−−−−−−−+−−−−−−−−+−−−−−−−+−−−−−−−

(0,1) | normal | 776 c | 777 a

(1 row)

Update

An update is performed in such a way as if the current tuple is deleted, and then a

new one is inserted:

=> BEGIN;

=> UPDATE t SET s = 'BAR';

=> SELECT pg_current_xact_id();

pg_current_xact_id

−−−−−−−−−−−−−−−−−−−−

778

(1 row)

The query returns a single row (its new version):

=> SELECT * FROM t;

id | s

−−−−+−−−−−

1 | BAR

(1 row)

85

Chapter 3 Pages and Tuples

But the page keeps both versions:

=> SELECT * FROM heap_page('t',0);

ctid | state | xmin | xmax

−−−−−−−+−−−−−−−−+−−−−−−−+−−−−−−

(0,1) | normal | 776 c | 778

(0,2) | normal | 778 | 0 a

(2 rows)

The xmax field of the previously deleted version contains the current transaction

��. This value is written on top of the old one because the previous transaction was

aborted. The xmax_aborted bit is unset since the status of the current transaction

is still unknown.

To complete this experiment, let’s commit the transaction.

=> COMMIT;

3.4 Indexes

Regardless of their type, indexes donot use row versioning; each row is represented

by exactly one tuple. In other words, index row headers do not contain xmin and

xmax fields. Index entries point to all the versions of the corresponding table rowp. ��� .

To figure out which row version is visible, transactions have to access the table

(unless the required page appears in the visibility map).

For convenience, let’s create a simple function that will use pageinspect to display

all the index entries in the page (�-tree index pages store them as a flat list):

=> CREATE FUNCTION index_page(relname text, pageno integer)

RETURNS TABLE(itemoffset smallint, htid tid)

AS $$

SELECT itemoffset,

htid -- ctid before v.13

FROM bt_page_items(relname,pageno);

$$ LANGUAGE sql;

The page references both heap tuples, the current and the previous one:

86

3.5 TOAST

=> SELECT * FROM index_page('t_s_idx',1);

itemoffset | htid

−−−−−−−−−−−−+−−−−−−−

1 | (0,2)

2 | (0,1)

(2 rows)

Since ��� < ���, the pointer to the second tuple comes first in the index.

3.5 TOAST

A ����� table p. ��is virtually a regular table, and it has its own versioning that does

not depend on row versions of the main table. However, rows of ����� tables are

handled in such a way that they are never updated; they can be either added or

deleted, so their versioning is somewhat artificial.

Each datamodification results in creation of a new tuple in themain table. But if an

update does not affect any long values stored in �����, the new tuple will reference

an existing toasted value. Only when a long value gets updated will Postgre���

create both a new tuple in the main table and new “toasts.”

3.6 Virtual Transactions

To consume transaction ��s sparingly, Postgre��� offers a special optimization.

If a transaction is read-only, it does not affect row visibility in any way. That’s why

such a transaction is given a virtual ���1 at first, p. ���which consists of the backend

process �� and a sequential number. Assigning a virtual ��� does not require any

synchronization between different processes, so it happens very fast. At this point,

the transaction has no real �� yet:

=> BEGIN;

1 backend/access/transam/xact.c

87

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/transam/xact.c;hb=REL_14_STABLE

Chapter 3 Pages and Tuples

=> -- txid_current_if_assigned() before v.13

SELECT pg_current_xact_id_if_assigned();

pg_current_xact_id_if_assigned

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

(1 row)

At different points in time, the system can contain some virtual ���s that have

already been used. And it is perfectly normal: virtual ���s exist only in ���, and

only while the corresponding transactions are active; they are never written into

data pages and never get to disk.

Once the transaction starts modifying data, it receives an actual unique ��:

=> UPDATE accounts

SET amount = amount - 1.00;

=> SELECT pg_current_xact_id_if_assigned();

pg_current_xact_id_if_assigned

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

780

(1 row)

=> COMMIT;

3.7 Subtransactions

Savepoints

S�� supports savepoints, which enable canceling some of the operations within a

transaction without aborting this transaction as a whole. But such a scenario does

not fit the course of action described above: the status of a transaction applies to

all its operations, and no physical data rollback is performed.

To implement this functionality, a transaction containing a savepoint is split into

several subtransactions,1 so their status can be managed separately.

1 backend/access/transam/subtrans.c

88

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/transam/subtrans.c;hb=REL_14_STABLE

3.7 Subtransactions

Subtransactions have their own ��s (which are bigger than the �� of themain trans-

action). The status of a subtransaction is written into ���� in the usual manner;

however, committed subtransactions receive both the committed and the aborted

bits at once. The final decision depends on the status of the main transaction: if it

is aborted, all its subtransactions will be considered aborted too.

The information about subtransactions is stored under the ������/pg_subtrans di-

rectory. File access is arranged via buffers that are located in the instance’s shared

memory and have the same structure as ���� buffers.1

Do not confuse subtransactions with autonomous ones. Unlike subtransactions, the latter

do not depend on each other in any way. Vanilla Postgre��� does not support autonomous

transactions, and it is probably for the best: they are required in very rare cases, but their

availability in other database systems often provokes misuse, which can cause a lot of

trouble.

Let’s truncate the table, start a new transaction, and insert a row:

=> TRUNCATE TABLE t;

=> BEGIN;

=> INSERT INTO t(s) VALUES ('FOO');

=> SELECT pg_current_xact_id();

pg_current_xact_id

−−−−−−−−−−−−−−−−−−−−

782

(1 row)

Now create a savepoint and insert another row:

=> SAVEPOINT sp;

=> INSERT INTO t(s) VALUES ('XYZ');

=> SELECT pg_current_xact_id();

pg_current_xact_id

−−−−−−−−−−−−−−−−−−−−

782

(1 row)

Note that the pg_current_xact_id function returns the �� of the main transaction,

not that of a subtransaction.

1 backend/access/transam/slru.c

89

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/transam/slru.c;hb=REL_14_STABLE

Chapter 3 Pages and Tuples

=> SELECT *

FROM heap_page('t',0) p

LEFT JOIN t ON p.ctid = t.ctid;

ctid | state | xmin | xmax | id | s

−−−−−−−+−−−−−−−−+−−−−−−+−−−−−−+−−−−+−−−−−

(0,1) | normal | 782 | 0 a | 2 | FOO

(0,2) | normal | 783 | 0 a | 3 | XYZ

(2 rows)

Let’s roll back to the savepoint and insert the third row:

=> ROLLBACK TO sp;

=> INSERT INTO t(s) VALUES ('BAR');

=> SELECT *

FROM heap_page('t',0) p

LEFT JOIN t ON p.ctid = t.ctid;

ctid | state | xmin | xmax | id | s

−−−−−−−+−−−−−−−−+−−−−−−+−−−−−−+−−−−+−−−−−

(0,1) | normal | 782 | 0 a | 2 | FOO

(0,2) | normal | 783 | 0 a | |

(0,3) | normal | 784 | 0 a | 4 | BAR

(3 rows)

The page still contains the row added by the aborted subtransaction.

Commit the changes:

=> COMMIT;

=> SELECT * FROM t;

id | s

−−−−+−−−−−

2 | FOO

4 | BAR

(2 rows)

=> SELECT * FROM heap_page('t',0);

ctid | state | xmin | xmax

−−−−−−−+−−−−−−−−+−−−−−−−+−−−−−−

(0,1) | normal | 782 c | 0 a

(0,2) | normal | 783 a | 0 a

(0,3) | normal | 784 c | 0 a

(3 rows)

90

3.7 Subtransactions

Now we can clearly see that each subtransaction has its own status.

S�� does not allow using subtransactions directly, that is, you cannot start a new

transaction before completing the current one:

=> BEGIN;

BEGIN

=> BEGIN;

WARNING: there is already a transaction in progress

BEGIN

=> COMMIT;

COMMIT

=> COMMIT;

WARNING: there is no transaction in progress

COMMIT

Subtransactions are employed implicitly: to implement savepoints, handle excep-

tions in ��/pg���, and in some other, more exotic cases.

Errors and Atomicity

What happens if an error occurs during execution of a statement?

=> BEGIN;

=> SELECT * FROM t;

id | s

−−−−+−−−−−

2 | FOO

4 | BAR

(2 rows)

=> UPDATE t SET s = repeat('X', 1/(id-4));

ERROR: division by zero

After a failure, the whole transaction is considered aborted and cannot perform

any further operations:

=> SELECT * FROM t;

ERROR: current transaction is aborted, commands ignored until end

of transaction block

91

Chapter 3 Pages and Tuples

And even if you try to commit the changes, Postgre��� will report that the trans-

action is rolled back:

=> COMMIT;

ROLLBACK

Why is it forbidden to continue transaction execution after a failure? Since the

already executed operations are never rolled back, we would get access to some

changes made before the error—it would break the atomicity of the statement, and

hence that of the transaction itself.

For example, in our experiment the operator hasmanaged to update one of the two

rows before the failure:

=> SELECT * FROM heap_page('t',0);

ctid | state | xmin | xmax

−−−−−−−+−−−−−−−−+−−−−−−−+−−−−−−

(0,1) | normal | 782 c | 785

(0,2) | normal | 783 a | 0 a

(0,3) | normal | 784 c | 0 a

(0,4) | normal | 785 | 0 a

(4 rows)

On a side note, psql provides a special mode that allows you to continue a transac-

tion after a failure as if the erroneous statement were rolled back:

=> \set ON_ERROR_ROLLBACK on

=> BEGIN;

=> UPDATE t SET s = repeat('X', 1/(id-4));

ERROR: division by zero

=> SELECT * FROM t;

id | s

−−−−+−−−−−

2 | FOO

4 | BAR

(2 rows)

=> COMMIT;

COMMIT

92

3.7 Subtransactions

As you can guess, psql simply adds an implicit savepoint before each command

when run in this mode; in case of a failure, a rollback is initiated. This mode is

not used by default because issuing savepoints (even if they are not rolled back to)

incurs significant overhead.

93

4
Snapshots

4.1 What is a Snapshot?

A data page can contain several versions of one and the same row, although each

transaction must see only one of them at the most. Together, visible versions of

all the different rows constitute a snapshotp. �� . A snapshot includes only the current

data committed by the time it was taken, thus providing a consistent (in the ����

sense) view of the data for this particular moment.

To ensure isolation, each transaction uses its own snapshot. Itmeans that different

transactions can see different snapshots taken at different points in time,which are

nevertheless consistent.

At the Read Committed isolation level, a snapshot is taken at the beginning of each

statement, and it remains active only for the duration of this statement.

At the Repeatable Read and Serializable levels, a snapshot is taken at the begin-

ning of the first statement of a transaction, and it remains active until the whole

transaction is complete.

xid

snapshot1 snapshot2

statement1 statement2

Read Committed
xid

snapshot

statement1 statement2

Repeatable Read,

Serializable

94

4.2 Row Version Visibility

4.2 Row Version Visibility

A snapshot is not a physical copy of all the required tuples. Instead, it is defined

by several numbers, while tuple visibility is determined by certain rules.

Tuple visibility is defined by xmin and xmax fields of the tuple header (that is, ��s

of transactions that perform insertion and deletion) and the corresponding hint

bits. Since xmin–xmax intervals do not intersect, each row is represented in any

snapshot by only one of its versions.

The exact visibility rules are quite complex,1 as they take into account a variety of

different scenarios and corner cases. Very roughly,we can describe them as follows:

a tuple is visible in a snapshot that includes xmin transaction changes but excludes

xmax transaction changes (in other words, the tuple has already appeared and has

not been deleted yet).

In their turn, transaction changes are visible in a snapshot if this transaction was

committed before the snapshot creation. As an exception, transactions can see

their own uncommitted changes. If a transaction is aborted, its changes will not

be visible in any snapshot.

Let’s take a look at a simple example. In this illustration line segments represent

transactions (from their start time till commit time):

xid
1 2 3

snapshot

Here visibility rules are applied to transactions as follows:

• Transaction � was committed before the snapshot creation, so its changes are

visible.

1 backend/access/heap/heapam_visibility.c

95

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/heap/heapam_visibility.c;hb=REL_14_STABLE

Chapter 4 Snapshots

• Transaction � was active at the time of the snapshot creation, so its changes

are not visible.

• Transaction � was started after the snapshot creation, so its changes are not

visible either (it makes no difference whether this transaction is completed or

not).

4.3 Snapshot Structure

Unfortunately, the previous illustration has nothing to do with the way Postgre���

actually sees this picture.1 The problem is that the system does not know when

transactions got committed. It is only knownwhen they were started (thismoment

is defined by the transaction ��),while their completion is not registered anywhere.

Commit times can be tracked2 if you enable theoff track_commit_timestamp parameter, but

they do not participate in visibility checks in any way (although it can still be useful to

track them for other purposes, for example, to apply in external replication solutions).

Besides, Postgre��� always logs commit and rollback times in the corresponding ��� en-

triesp. ��� , but this information is used only for point-in-time recovery.

It is only the current status of a transaction that we can learn. This information is

available in the server’s shared memory: the ProcArray structure contains the list

of all the active sessions and their transactions. Once a transaction is complete, it

is impossible to find out whether it was active at the time of the snapshot creation.

So to create a snapshot, it is not enough to register the moment when it was taken:

it is also necessary to collect the status of all the transactions at that moment.

Otherwise, later it will be impossible to understand which tuples must be visible

in the snapshot, and which must be excluded.

Take a look at the information available to the systemwhen the snapshotwas taken

and some time afterwards (the white circle denotes an active transaction, whereas

the black circles stand for completed ones):

1 include/utils/snapshot.h

backend/utils/time/snapmgr.c
2 backend/access/transam/commit_ts.c

96

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/include/utils/snapshot.h;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/utils/time/snapmgr.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/transam/commit_ts.c;hb=REL_14_STABLE

4.3 Snapshot Structure

xid
1 2 3

at snapshot creation…

xid
1 2 3

…and some time later

Suppose we did not know that at the time the snapshot was taken the first transac-

tion was still being executed and the third transaction had not started yet. Then it

would seem that they were just like the second transaction (which was committed

at that time), and it would be impossible to filter them out.

For this reason, Postgre��� cannot create a snapshot that shows a consistent state

of data at some arbitrary point in the past, even if all the required tuples are present

in heap pages. Consequently, it is impossible to implement retrospective queries

(which are sometimes also called temporal or flashback queries).

Intriguingly, such functionality was declared as one of the objectives of Postgres and was

implemented at the very start, but it was removed from the database system when the

project support was passed on to the community.1

Thus, a snapshot consists of several values saved at the time of its creation:2

xmin is the snapshot’s lower boundary,which is represented by the �� of the oldest

active transaction.

All the transactions with smaller ��s p. ���are either committed (so their changes

are included into the snapshot) or aborted (so their changes are ignored).

xmax is the snapshot’s upper boundary, which is represented by the value that

exceeds the �� of the latest committed transaction by one. Theupper boundary

defines the moment when the snapshot was taken.

All the transactions whose ��s are equal to or greater than xmax are either still

running or do not exist, so their changes cannot be visible.

xip_list is the list of ��s of all the active transactions except for virtual ones,which

do not affect visibility in any way. p. ��

1 Joseph M. Hellerstein, Looking Back at Postgres. https://arxiv.org/pdf/1901.01973.pdf
2 backend/storage/ipc/procarray.c, GetSnapshotData function

97

https://https://arxiv.org/pdf/1901.01973.pdf
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/storage/ipc/procarray.c;hb=REL_14_STABLE

Chapter 4 Snapshots

Snapshots also include several other parameters, but we will ignore them for now.

In a graphical form, a snapshot can be represented as a rectangle that comprises

transactions from xmin to xmax:

xid
1 2 3

xmin xmax

xip_list

To understand how visibility rules are defined by the snapshot, we are going to

reproduce the above scenario on the accounts table.

=> TRUNCATE TABLE accounts;

The first transaction inserts the first row into the table and remains open:

=> BEGIN;

=> INSERT INTO accounts VALUES (1, 'alice', 1000.00);

=> SELECT pg_current_xact_id();

pg_current_xact_id

−−−−−−−−−−−−−−−−−−−−

790

(1 row)

The second transaction inserts the second row and commits this change immedi-

ately:

=> BEGIN;

=> INSERT INTO accounts VALUES (2, 'bob', 100.00);

=> SELECT pg_current_xact_id();

pg_current_xact_id

−−−−−−−−−−−−−−−−−−−−

791

(1 row)

=> COMMIT;

98

4.3 Snapshot Structure

At this point, let’s create a new snapshot in another session. We could simply run

any query for this purpose, but we will use a special function to take a look at this

snapshot right away:

=> BEGIN ISOLATION LEVEL REPEATABLE READ;

=> -- txid_current_snapshot() before v.13

SELECT pg_current_snapshot();

pg_current_snapshot

−−−−−−−−−−−−−−−−−−−−−

790:792:790

(1 row)

This function displays the following snapshot components, separated by colons:

xmin, xmax, and xip_list (the list of active transactions; in this particular case it

consists of a single item).

Once the snapshot is taken, commit the first transaction:

=> COMMIT;

The third transaction is started after the snapshot creation. It modifies the second

row, so a new tuple appears:

=> BEGIN;

=> UPDATE accounts SET amount = amount + 100 WHERE id = 2;

=> SELECT pg_current_xact_id();

pg_current_xact_id

−−−−−−−−−−−−−−−−−−−−

792

(1 row)

=> COMMIT;

Our snapshot sees only one tuple:

=> SELECT ctid, * FROM accounts;

ctid | id | client | amount

−−−−−−−+−−−−+−−−−−−−−+−−−−−−−−

(0,2) | 2 | bob | 100.00

(1 row)

99

Chapter 4 Snapshots

But the table contains three of them:

=> SELECT * FROM heap_page('accounts',0);

ctid | state | xmin | xmax

−−−−−−−+−−−−−−−−+−−−−−−−+−−−−−−−

(0,1) | normal | 790 c | 0 a

(0,2) | normal | 791 c | 792 c

(0,3) | normal | 792 c | 0 a

(3 rows)

So how does Postgre��� choose which versions to show? By the above rules,

changes are included into a snapshot only if they are made by committed trans-

actions that satisfy the following criteria:

• If xid < xmin, changes are shown unconditionally (like in the case of the trans-

action that created the accounts table).

• If xmin ⩽ xid < xmax, changes are shownonly if the corresponding transaction

��s are not in xip_list.

The first row (�,�) is invisible because it is inserted by a transaction that appears in

xip_list (even though this transaction falls into the snapshot range).

The latest version of the second row (�,�) is invisible because the corresponding

transaction �� is above the upper boundary of the snapshot.

But the first version of the second row (�,�) is visible: row insertion was performed

by a transaction that falls into the snapshot range and does not appear in xip_list

(the insertion is visible), while row deletion was performed by a transaction whose

�� is above the upper boundary of the snapshot (the deletion is invisible).

=> COMMIT;

4.4 Visibility of Transactions’ Own Changes

Things get a bit more complicated when it comes to defining visibility rules for

transactions’ own changes: in some cases, only part of such changes must be vis-

ible. For example, a cursor that was opened at a particular point in time must not

see any changes that happened later, regardless of the isolation level.

100

4.4 Visibility of Transactions’ Own Changes

To address such situations, tuple headers provide a special field (displayed as

cmin and cmax pseudocolumns) that shows the sequence number of the operation

within the transaction. The cmin column identifies insertion, while cmax is used

for deletion operations. To save space, these values are stored in a single field of

the tuple header rather than in two different ones. It is assumed that one and the

same row almost never gets both inserted and deleted within a single transaction.

(If it does happen, Postgre��� writes a special combo identifier into this field, and

the actual cmin and cmax values are stored by the backend in this case.1)

As an illustration, let’s start a transaction and insert a row into the table:

=> BEGIN;

=> INSERT INTO accounts VALUES (3, 'charlie', 100.00);

=> SELECT pg_current_xact_id();

pg_current_xact_id

−−−−−−−−−−−−−−−−−−−−

793

(1 row)

Open a cursor to run the query that returns the number of rows in this table:

=> DECLARE c CURSOR FOR SELECT count(*) FROM accounts;

Insert one more row:

=> INSERT INTO accounts VALUES (4, 'charlie', 200.00);

Now extend the output by another column to display the cmin value for the rows

inserted by our transaction (it makes no sense for other rows):

=> SELECT xmin, CASE WHEN xmin = 793 THEN cmin END cmin, *

FROM accounts;

xmin | cmin | id | client | amount

−−−−−−+−−−−−−+−−−−+−−−−−−−−−+−−−−−−−−−

790 | | 1 | alice | 1000.00

792 | | 2 | bob | 200.00

793 | 0 | 3 | charlie | 100.00

793 | 1 | 4 | charlie | 200.00

(4 rows)

1 backend/utils/time/combocid.c

101

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/utils/time/combocid.c;hb=REL_14_STABLE

Chapter 4 Snapshots

The cursor query gets only three rows; the row inserted when the cursor was al-

ready open does not make it into the snapshot because the cmin < 1 condition is

not satisfied:

=> FETCH c;

count

−−−−−−−

3

(1 row)

Naturally, this cmin number is also stored in the snapshot, but it is impossible to

display it using any ��� means.

4.5 Transaction Horizon

As mentioned earlier, the lower boundary of the snapshot is represented by xmin,

which is the �� of the oldest transaction that was active at the moment of the snap-

shot creation. This value is very important because it defines the horizon of the

transaction that uses this snapshot.

If a transaction has no active snapshot (for example, at the Read Committed isola-

tion level between statement execution), its horizon is defined by its own �� if it is

assigned.

All the transactions that are beyond the horizon (those with xid < xmin) are gu-

ranteed to be committed. It means that a transaction can see only the current row

versions beyond its horizon.

As you can guess, this term is inspired by the concept of event horizon in physics.

Postgre��� tracks the current horizons of all its processes; transactions can see

their own horizons in the pg_stat_activity table:

=> BEGIN;

=> SELECT backend_xmin FROM pg_stat_activity

WHERE pid = pg_backend_pid();

backend_xmin

−−−−−−−−−−−−−−

793

(1 row)

102

4.5 Transaction Horizon

Virtual transactions have no real ��s, but they still use snapshots just like regular

transactions, so they have their own horizons. The only exception is virtual trans-

actions without an active snapshot: the concept of the horizon makes no sense for

them, and they are fully “transparent” to the system when it comes to snapshots

and visibility (even though pg_stat_activity.backend_xminmay still contain an xmin

of an old snapshot).

We can also define the database horizon in a similar manner. For this purpose,

we should take the horizons of all the transactions in this database and select the

most remote one, which has the oldest xmin.1 Beyond this horizon, outdated heap

tuples will never be visible to any transaction in this database. Such tuples can be

safely cleaned up by vacuum—this is exactly why the concept of the horizon is so

important from a practical standpoint.

xid
1 2 3 4 5 6 7 8 9 10

database
horizon

outdated tuples

that can be vacuumed

Let’s draw some conclusions:

• If a transaction (no matter whether it is real or virtual) at the Repeatable Read

or Serializable isolation level is running for a long time, it thereby holds the

database horizon and defers vacuuming.

1 backend/storage/ipc/procarray.c, ComputeXidHorizons function

103

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/storage/ipc/procarray.c;hb=REL_14_STABLE

Chapter 4 Snapshots

• A real transaction at the Read Committed isolation level holds the database

horizon in the same way, even if it is not executing any operators (being in the

“idle in transaction” state).

• A virtual transaction at the Read Committed isolation level holds the horizon

only while executing operators.

There is only one horizon for the whole database, so if it is being held by a trans-

action, it is impossible to vacuum any data within this horizon—even if this data

has not been accessed by this transaction.

Cluster-wide tables of the system catalog have a separate horizon that takes into account

all transactions in all databases. Temporary tables, on the contrary, do not have to pay

attention to any transactions except those that are being executed by the current process.

Let’s get back to our current experiment. The active transaction of the first session

still holds the database horizon; we can see it by incrementing the transaction

counter:

=> SELECT pg_current_xact_id();

pg_current_xact_id

−−−−−−−−−−−−−−−−−−−−

794

(1 row)

=> SELECT backend_xmin FROM pg_stat_activity

WHERE pid = pg_backend_pid();

backend_xmin

−−−−−−−−−−−−−−

793

(1 row)

And only when this transaction is complete, the horizon moves forward, and out-

dated tuples can be vacuumed:

=> COMMIT;

=> SELECT backend_xmin FROM pg_stat_activity

WHERE pid = pg_backend_pid();

backend_xmin

−−−−−−−−−−−−−−

795

(1 row)

104

4.6 System Catalog Snapshots

In a perfect world, you should avoid combining p. ���long transactions with frequent

updates (that spawn new row versions), as it will lead to table and index bloating.

4.6 System Catalog Snapshots

Although the system catalog consists of regular tables, they cannot be accessed

via a snapshot used by a transaction or an operator. The snapshot must be “fresh”

enough to include all the latest changes, otherwise transactions could see outdated

definitions of table columns or miss newly added integrity constraints.

Here is a simple example:

=> BEGIN TRANSACTION ISOLATION LEVEL REPEATABLE READ;

=> SELECT 1; -- a snapshot for the transaction is taken

=> ALTER TABLE accounts

ALTER amount SET NOT NULL;

=> INSERT INTO accounts(client, amount)

VALUES ('alice', NULL);

ERROR: null value in column "amount" of relation "accounts"

violates not−null constraint

DETAIL: Failing row contains (1, alice, null).

=> ROLLBACK;

The integrity constraint that appeared after the snapshot creation was visible to

the ������ command. It may seem that such behavior breaks isolation, but if the

inserting transaction had managed to reach the accounts table before the ����� ��-

��� command, the latter would have been blocked p. ���until this transaction completed.

In general, the server behaves as if a separate snapshot is created for each system

catalog query. But the implementation is, of course, much more complex1 since

frequent snapshot creation would negatively affect performance; besides, many

system catalog objects get cached, and it must also be taken into account.

1 backend/utils/time/snapmgr.c, GetCatalogSnapshot function

105

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/utils/time/snapmgr.c;hb=REL_14_STABLE

Chapter 4 Snapshots

4.7 Exporting Snapshots

In some situations, concurrent transactions must see one and the same snapshot

by all means. For example, if the pg_dump utility is run in the parallel mode, all its

processes must see the same database state to produce a consistent backup.

We cannot assume that snapshots will be identical simply because transactions

were started “simultaneously.” To ensure that all the transactions see the same

data, we must employ the snapshot export mechanism.

The pg_export_snapshot function returns a snapshot ��, which can be passed to

another transaction (outside of the database system):

=> BEGIN ISOLATION LEVEL REPEATABLE READ;

=> SELECT count(*) FROM accounts;

count

−−−−−−−

4

(1 row)

=> SELECT pg_export_snapshot();

pg_export_snapshot

−−−−−−−−−−−−−−−−−−−−−

00000004−0000006E−1

(1 row)

Before executing the first statement, the other transaction can import the snapshot

by running the ��� ����������� �������� command. The isolation level must be set

to Repeatable Read or Serializable because operators use their own snapshots at the

Read Committed level:

=> DELETE FROM accounts;

=> BEGIN ISOLATION LEVEL REPEATABLE READ;

=> SET TRANSACTION SNAPSHOT '00000004-0000006E-1';

Now the second transaction is going to use the snapshot of the first transaction,

and consequently, it will see four rows (instead of zero):

106

4.7 Exporting Snapshots

=> SELECT count(*) FROM accounts;

count

−−−−−−−

4

(1 row)

Clearly, the second transaction will not see any changes made by the first transac-

tion after the snapshot export (and vice versa): regular visibility rules still apply.

The exported snapshot’s lifetime is the same as that of the exporting transaction.

=> COMMIT;

=> COMMIT;

107

5
Page Pruning and HOT Updates

5.1 Page Pruning

While a heap page is being read or updated, Postgre��� can perform some quick

page cleanup, or pruning.1 It happens in the following cases:

• The previous ������ operation did not find enough space to place a new tuple

into the same page. This event is reflected in the page header.

• The heap page contains more data than allowed by the100 fillfactor storage pa-

rameter.

An ������ operation can add a new row into the page only if this page is filled

for less than fillfactor percent. The rest of the space is kept for ������ opera-

tions (no such space is reserved by default).

Page pruning removes the tuples that cannot be visible in any snapshot anymore

(that is, that are beyond the database horizonp. ���). It never goes beyond a single heap

page, but in return it is performed very fast. Pointers to pruned tuples remain

in place since they may be referenced from an index—which is already a different

page.

For the same reason, neither the visibility map nor the free space map is refreshed

(so the recovered space is set aside for updates, not for insertions).

Since a page can be pruned during reads, any ������ statement can cause page

modifications. This is yet another such case in addition to deferred setting of in-

formation bits.p. ��

1 backend/access/heap/pruneheap.c, heap_page_prune_opt function

108

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/heap/pruneheap.c;hb=REL_14_STABLE

5.1 Page Pruning

Let’s take a look at how page pruning actually works. We are going to create a

two-column table and build an index on each of the columns:

=> CREATE TABLE hot(id integer, s char(2000)) WITH (fillfactor = 75);

=> CREATE INDEX hot_id ON hot(id);

=> CREATE INDEX hot_s ON hot(s);

If the s column contains only Latin letters, each heap tuple will have a fixed size

of ���� bytes, plus �� bytes of the header. The fillfactor storage parameter is set

to ��%. It means that the page has enough free space for four tuples, but we can

insert only three.

Let’s insert a new row and update it several times:

=> INSERT INTO hot VALUES (1, 'A');

=> UPDATE hot SET s = 'B';

=> UPDATE hot SET s = 'C';

=> UPDATE hot SET s = 'D';

Now the page contains four tuples:

=> SELECT * FROM heap_page('hot',0);

ctid | state | xmin | xmax

−−−−−−−+−−−−−−−−+−−−−−−−+−−−−−−−

(0,1) | normal | 801 c | 802 c

(0,2) | normal | 802 c | 803 c

(0,3) | normal | 803 c | 804

(0,4) | normal | 804 | 0 a

(4 rows)

Expectedly, we have just exceeded the fillfactor threshold. You can tell it by the

difference between the pagesize and upper p. ��values—it is bigger than ��% of the

page size, which is ���� bytes:

=> SELECT upper, pagesize FROM page_header(get_raw_page('hot',0));

upper | pagesize

−−−−−−−+−−−−−−−−−−

64 | 8192

(1 row)

The next page access triggers page pruning that removes all the outdated tuples.

Then a new tuple (�,�) is added into the freed space:

109

Chapter 5 Page Pruning and HOT Updates

=> UPDATE hot SET s = 'E';

=> SELECT * FROM heap_page('hot',0);

ctid | state | xmin | xmax

−−−−−−−+−−−−−−−−+−−−−−−−+−−−−−−

(0,1) | dead | |

(0,2) | dead | |

(0,3) | dead | |

(0,4) | normal | 804 c | 805

(0,5) | normal | 805 | 0 a

(5 rows)

The remaining heap tuples are physically moved towards the highest addresses

so that all the free space is aggregated into a single continuous chunk. The tuple

pointers are also modified accordingly. As a result, there is no free space fragmen-

tation in the page.

The pointers to the pruned tuples cannot be removed yet because they are still ref-

erenced from the indexes; Postgre��� changes their status from normal to dead.

Let’s take a look at the first page of the hot_s index (the zero page is used for meta-

data):

=> SELECT * FROM index_page('hot_s',1);

itemoffset | htid

−−−−−−−−−−−−+−−−−−−−

1 | (0,1)

2 | (0,2)

3 | (0,3)

4 | (0,4)

5 | (0,5)

(5 rows)

We can see the same picture in the other index too:

=> SELECT * FROM index_page('hot_id',1);

itemoffset | htid

−−−−−−−−−−−−+−−−−−−−

1 | (0,1)

2 | (0,2)

3 | (0,3)

4 | (0,4)

5 | (0,5)

(5 rows)

110

5.1 Page Pruning

An index scan can return (�,�), (�,�), and (�,�) as tuple identifiers. The server tries

to read the corresponding heap tuple but sees that the pointer has the dead status;

it means that this tuple does not exist anymore and should be ignored. And while

being at it, the server also changes the pointer status in the index page to avoid

repeated heap page access.1

Let’s extend the function v. ��displaying index pages so that it also shows whether the

pointer is dead:

=> DROP FUNCTION index_page(text, integer);

=> CREATE FUNCTION index_page(relname text, pageno integer)

RETURNS TABLE(itemoffset smallint, htid tid, dead boolean)

AS $$

SELECT itemoffset,

htid,

dead -- starting from v.13

FROM bt_page_items(relname,pageno);

$$ LANGUAGE sql;

=> SELECT * FROM index_page('hot_id',1);

itemoffset | htid | dead

−−−−−−−−−−−−+−−−−−−−+−−−−−−

1 | (0,1) | f

2 | (0,2) | f

3 | (0,3) | f

4 | (0,4) | f

5 | (0,5) | f

(5 rows)

All the pointers in the index page are active so far. But as soon as the first index

scan occurs, their status changes:

=> EXPLAIN (analyze, costs off, timing off, summary off)

SELECT * FROM hot WHERE id = 1;

QUERY PLAN

−−

Index Scan using hot_id on hot (actual rows=1 loops=1)

Index Cond: (id = 1)

(2 rows)

1 backend/access/index/indexam.c, index_fetch_heap function

111

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/index/indexam.c;hb=REL_14_STABLE

Chapter 5 Page Pruning and HOT Updates

=> SELECT * FROM index_page('hot_id',1);

itemoffset | htid | dead

−−−−−−−−−−−−+−−−−−−−+−−−−−−

1 | (0,1) | t

2 | (0,2) | t

3 | (0,3) | t

4 | (0,4) | t

5 | (0,5) | f

(5 rows)

Although the heap tuple referenced by the fourth pointer is still unpruned and

has the normal status, it is already beyond the database horizon. That’s why this

pointer is also marked as dead in the index.

5.2 HOT Updates

It would be very inefficient to keep references to all heap tuples in an index.

To begin with, each rowmodification triggers updates of all the indexes created on

the table: once a new heap tuple appears, each index must include a reference to

this tuple, even if the modified fields are not indexed.

Furthermore, indexes accumulate references to historic heap tuples, so they have

to be pruned together with these tuples.p. ���

Things get worse as you create more indexes on a table.

But if the updated column is not a part of any index, there is no point in creating

another index entry that contains the same key value. To avoid such redundancies,

Postgre��� provides an optimization called Heap-Only Tuple updates.1

If such an update is performed, an index page contains only one entry for each row.

This entry points to the very first row version; all the subsequent versions located

in the same page are bound into a chain by ctid pointers in the tuple headers.

Row versions that are not referenced from any index are tagged with theHeap-Only

Tuple bit. If a version is included into the ��� chain, it is tagged with the Heap Hot

Updated bit.

1 backend/access/heap/README.HOT

112

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/heap/README.HOT;hb=REL_14_STABLE

5.2 HOT Updates

If an index scan accesses a heap page and finds a row version marked as Heap Hot

Updated, it means that the scan should continue, so it goes further along the chain

of ��� updates. Obviously, all the fetched row versions are checked for visibility

before the result is returned to the client.

To take a look at how ��� updates are performed, let’s delete one of the indexes

and truncate the table.

=> DROP INDEX hot_s;

=> TRUNCATE TABLE hot;

For convenience, we will redefine the heap_page function so that its output in-

cludes three more fields: ctid and the two bits related to ��� updates:

=> DROP FUNCTION heap_page(text,integer);

=> CREATE FUNCTION heap_page(relname text, pageno integer)

RETURNS TABLE(

ctid tid, state text,

xmin text, xmax text,

hhu text, hot text, t_ctid tid

) AS $$

SELECT (pageno,lp)::text::tid AS ctid,

CASE lp_flags

WHEN 0 THEN 'unused'

WHEN 1 THEN 'normal'

WHEN 2 THEN 'redirect to '||lp_off

WHEN 3 THEN 'dead'

END AS state,

t_xmin || CASE

WHEN (t_infomask & 256) > 0 THEN ' c'

WHEN (t_infomask & 512) > 0 THEN ' a'

ELSE ''

END AS xmin,

t_xmax || CASE

WHEN (t_infomask & 1024) > 0 THEN ' c'

WHEN (t_infomask & 2048) > 0 THEN ' a'

ELSE ''

END AS xmax,

CASE WHEN (t_infomask2 & 16384) > 0 THEN 't' END AS hhu,

CASE WHEN (t_infomask2 & 32768) > 0 THEN 't' END AS hot,

t_ctid

FROM heap_page_items(get_raw_page(relname,pageno))

ORDER BY lp;

$$ LANGUAGE sql;

113

Chapter 5 Page Pruning and HOT Updates

Let’s repeat the insert and update operations:

=> INSERT INTO hot VALUES (1, 'A');

=> UPDATE hot SET s = 'B';

The page now contains a chain of ��� updates:

• The Heap Hot Updated bit shows that the executor should follow the ����

chain.

• The Heap Only Tuple bit indicates that this tuple is not referenced from any

indexes.

=> SELECT * FROM heap_page('hot',0);

ctid | state | xmin | xmax | hhu | hot | t_ctid

−−−−−−−+−−−−−−−−+−−−−−−−+−−−−−−+−−−−−+−−−−−+−−−−−−−−

(0,1) | normal | 812 c | 813 | t | | (0,2)

(0,2) | normal | 813 | 0 a | | t | (0,2)

(2 rows)

As we make further updates, the chain will grow—but only within the page limits:

=> UPDATE hot SET s = 'C';

=> UPDATE hot SET s = 'D';

=> SELECT * FROM heap_page('hot',0);

ctid | state | xmin | xmax | hhu | hot | t_ctid

−−−−−−−+−−−−−−−−+−−−−−−−+−−−−−−−+−−−−−+−−−−−+−−−−−−−−

(0,1) | normal | 812 c | 813 c | t | | (0,2)

(0,2) | normal | 813 c | 814 c | t | t | (0,3)

(0,3) | normal | 814 c | 815 | t | t | (0,4)

(0,4) | normal | 815 | 0 a | | t | (0,4)

(4 rows)

The index still contains only one reference, which points to the head of this chain:

=> SELECT * FROM index_page('hot_id',1);

itemoffset | htid | dead

−−−−−−−−−−−−+−−−−−−−+−−−−−−

1 | (0,1) | f

(1 row)

114

5.3 Page Pruning for HOT Updates

A ��� update is possible if the modified fields are not a part of any index. Other-

wise, some of the indexes would contain a reference to a heap tuple that appears

in the middle of the chain, which contradicts the idea of this optimization. Since

a ��� chain can grow only within a single page, traversing the whole chain never

requires access to other pages and thus does not hamper performance.

5.3 Page Pruning for HOT Updates

A special case of page pruning—which is nevertheless important—is pruning of

��� update chains.

In the example above, the fillfactor threshold is already exceeded, so the next up-

date should trigger page pruning. But this time the page contains a chain of ���

updates. The head of this chain must always remain in its place since it is refer-

enced from the index, but other pointers can be released because they are sure to

have no external references.

To avoidmoving the head, Postgre��� uses dual addressing: the pointer referenced

from the index (which is (�,�) in this case) receives the redirect status since it points

to the tuple that currently starts the chain:

=> UPDATE hot SET s = 'E';

=> SELECT * FROM heap_page('hot',0);

ctid | state | xmin | xmax | hhu | hot | t_ctid

−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−+−−−−−−+−−−−−+−−−−−+−−−−−−−−

(0,1) | redirect to 4 | | | | |

(0,2) | normal | 816 | 0 a | | t | (0,2)

(0,3) | unused | | | | |

(0,4) | normal | 815 c | 816 | t | t | (0,2)

(4 rows)

The tuples (�,�), (�,�), and (�,�) have been pruned; the head pointer � remains for

redirection purposes, while pointers � and � have been deallocated (received the

unused status) since they are guaranteed to have no references from indexes. The

new tuple is written into the freed space as tuple (�,�).

115

Chapter 5 Page Pruning and HOT Updates

Let’s perform some more updates:

=> UPDATE hot SET s = 'F';

=> UPDATE hot SET s = 'G';

=> SELECT * FROM heap_page('hot',0);

ctid | state | xmin | xmax | hhu | hot | t_ctid

−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−+−−−−−−−+−−−−−+−−−−−+−−−−−−−−

(0,1) | redirect to 4 | | | | |

(0,2) | normal | 816 c | 817 c | t | t | (0,3)

(0,3) | normal | 817 c | 818 | t | t | (0,5)

(0,4) | normal | 815 c | 816 c | t | t | (0,2)

(0,5) | normal | 818 | 0 a | | t | (0,5)

(5 rows)

The next update is going to trigger page pruning:

=> UPDATE hot SET s = 'H';

=> SELECT * FROM heap_page('hot',0);

ctid | state | xmin | xmax | hhu | hot | t_ctid

−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−+−−−−−−+−−−−−+−−−−−+−−−−−−−−

(0,1) | redirect to 5 | | | | |

(0,2) | normal | 819 | 0 a | | t | (0,2)

(0,3) | unused | | | | |

(0,4) | unused | | | | |

(0,5) | normal | 818 c | 819 | t | t | (0,2)

(5 rows)

Again, some of the tuples are pruned, and the pointer to the head of the chain is

shifted accordingly.

If unindexed columns are modified frequently, it makes sense to reduce the fillfac-

tor value, thus reserving some space in the page for updates. Obviously, you have

to keep in mind that the lower the fillfactor value is, the more free space is left in

the page, so the physical size of the table grows.

116

5.4 HOT Chain Splits

5.4 HOT Chain Splits

If the page has no more space to accommodate a new tuple, the chain will be cut

off. Postgre��� will have to add a separate index entry to refer to the tuple located

in another page.

To observe this situation, let’s start a concurrent transaction with a snapshot that

blocks page pruning:

=> BEGIN ISOLATION LEVEL REPEATABLE READ;

=> SELECT 1;

Now we are going to perform some updates in the first session:

=> UPDATE hot SET s = 'I';

=> UPDATE hot SET s = 'J';

=> UPDATE hot SET s = 'K';

=> SELECT * FROM heap_page('hot',0);

ctid | state | xmin | xmax | hhu | hot | t_ctid

−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−+−−−−−−−+−−−−−+−−−−−+−−−−−−−−

(0,1) | redirect to 2 | | | | |

(0,2) | normal | 819 c | 820 c | t | t | (0,3)

(0,3) | normal | 820 c | 821 c | t | t | (0,4)

(0,4) | normal | 821 c | 822 | t | t | (0,5)

(0,5) | normal | 822 | 0 a | | t | (0,5)

(5 rows)

When the next update happens, this page will not be able to accommodate another

tuple, and page pruning will not manage to free any space:

=> UPDATE hot SET s = 'L';

=> COMMIT; -- the snapshot is not required anymore

117

Chapter 5 Page Pruning and HOT Updates

=> SELECT * FROM heap_page('hot',0);

ctid | state | xmin | xmax | hhu | hot | t_ctid

−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−+−−−−−−−+−−−−−+−−−−−+−−−−−−−−

(0,1) | redirect to 2 | | | | |

(0,2) | normal | 819 c | 820 c | t | t | (0,3)

(0,3) | normal | 820 c | 821 c | t | t | (0,4)

(0,4) | normal | 821 c | 822 c | t | t | (0,5)

(0,5) | normal | 822 c | 823 | | t | (1,1)

(5 rows)

Tuple (�,�) contains the (�,�) reference that goes to page �:

=> SELECT * FROM heap_page('hot',1);

ctid | state | xmin | xmax | hhu | hot | t_ctid

−−−−−−−+−−−−−−−−+−−−−−−+−−−−−−+−−−−−+−−−−−+−−−−−−−−

(1,1) | normal | 823 | 0 a | | | (1,1)

(1 row)

However, this reference is not used: the Heap Hot Updated bit is not set for tuple

(�,�). As for tuple (�,�), it can be accessed from the index that now has two entries.

Each of them points to the head of their own ��� chain:

=> SELECT * FROM index_page('hot_id',1);

itemoffset | htid | dead

−−−−−−−−−−−−+−−−−−−−+−−−−−−

1 | (0,1) | f

2 | (1,1) | f

(2 rows)

5.5 Page Pruning for Indexes

I have declared that page pruning is confined to a single heap page and does not

affect indexes. However, indexes have their own pruning,1 which also cleans up a

single page—an index one in this case.

Index pruning happens when an insertion into a �-tree is about to split the page

into two, as the original page does not have enough space anymore. The problem is

that even if some index entries are deleted later, two separate index pages will not

1 postgresql.org/docs/14/btree-implementation.html#BTREE-DELETION

118

https://postgresql.org/docs/14/btree-implementation.html#BTREE-DELETION

5.5 Page Pruning for Indexes

be merged into one. It leads to index bloating, and once bloated, the index cannot

shrink even if a large part of the data is deleted. But if pruning can remove some

of the tuples, a page split may be deferred.

There are two types of tuples that can be pruned from an index.

First of all, Postgre��� prunes those tuples that have been tagged as dead.1 As

I have already said, Postgre��� sets such a tag during an index scan if it detects

an index entry pointing to a tuple that is not visible in any snapshot anymore or

simply does not exist.

If no tuples are known to be dead v. ��, Postgre��� checks those index entries that ref-

erence different versions of one and the same table row.2 Because of ����, update

operations may generate a large number of row versions, and many of them are

soon likely to disappear behind the database horizon. H�� updates cushion this

effect, but they are not always applicable: if the column to update is a part of an

index, the corresponding references are propagated to all the indexes. Before split-

ting the page, it makes sense to search for the rows that are not tagged as dead

yet but can already be pruned. To achieve this, Postgre��� has to check visibility

of heap tuples. Such checks require table access, so they are performed only for

“promising” index tuples, which have been created as copies of the existing ones

for ���� purposes. It is cheaper to perform such a check than to allow an extra

page split.

1 backend/access/nbtree/README, Simple deletion section
2 backend/access/nbtree/README, Bottom-Up deletion section

include/access/tableam.h

119

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/nbtree/README;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/nbtree/README;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/include/access/tableam.h;hb=REL_14_STABLE

6
Vacuum and Autovacuum

6.1 Vacuum

Page pruning happens very fast, but it frees only part of the space that can be po-

tentially reclaimed. Operating within a single heap page, it does not touch upon

indexes (or vice versa, it cleans up an index page without affecting the table).

Routine vacuuming,1 which is the main vacuuming procedure, is performed by the

������ command.2 It processes thewhole table and eliminates both outdatedheap

tuples and all the corresponding index entries.

Vacuuming is performed in parallel with other processes in the database system.

While being vacuumed, tables and indexes can be used in the usual manner, both

for read and write operations (but concurrent execution of such commands as ���-

��� �����, ����� �����, and some others is not allowedp. ���).

To avoid scanning extra pages, Postgre��� uses a visibility mapp. �� . Pages tracked

in this map are skipped since they are sure to contain only the current tuples, so

a page will only be vacuumed if it does not appear in this map. If all the tuples

remaining in a page after vacuuming are beyond the database horizon, the visibility

map is refreshed to include this page.

The free space map also gets updated to reflect the space that has been cleared.

Let’s create a table with an index on it:

1 postgresql.org/docs/14/routine-vacuuming.html
2 postgresql.org/docs/14/sql-vacuum.html

backend/commands/vacuum.c

120

https://postgresql.org/docs/14/routine-vacuuming.html
https://postgresql.org/docs/14/sql-vacuum.html
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/commands/vacuum.c;hb=REL_14_STABLE

6.1 Vacuum

=> CREATE TABLE vac(

id integer,

s char(100)

)

WITH (autovacuum_enabled = off);

=> CREATE INDEX vac_s ON vac(s);

The autovacuum_enabled storage parameter turns off autovacuum; we are doing

it here solely for the purpose of experimentation to precisely control vacuuming

start time.

Let’s insert a row and make a couple of updates:

=> INSERT INTO vac(id,s) VALUES (1,'A');

=> UPDATE vac SET s = 'B';

=> UPDATE vac SET s = 'C';

Now the table contains three tuples:

=> SELECT * FROM heap_page('vac',0);

ctid | state | xmin | xmax | hhu | hot | t_ctid

−−−−−−−+−−−−−−−−+−−−−−−−+−−−−−−−+−−−−−+−−−−−+−−−−−−−−

(0,1) | normal | 826 c | 827 c | | | (0,2)

(0,2) | normal | 827 c | 828 | | | (0,3)

(0,3) | normal | 828 | 0 a | | | (0,3)

(3 rows)

Each tuple is referenced from the index:

=> SELECT * FROM index_page('vac_s',1);

itemoffset | htid | dead

−−−−−−−−−−−−+−−−−−−−+−−−−−−

1 | (0,1) | f

2 | (0,2) | f

3 | (0,3) | f

(3 rows)

Vacuuming has removed all the dead tuples, leaving only the current one:

=> VACUUM vac;

121

Chapter 6 Vacuum and Autovacuum

=> SELECT * FROM heap_page('vac',0);

ctid | state | xmin | xmax | hhu | hot | t_ctid

−−−−−−−+−−−−−−−−+−−−−−−−+−−−−−−+−−−−−+−−−−−+−−−−−−−−

(0,1) | unused | | | | |

(0,2) | unused | | | | |

(0,3) | normal | 828 c | 0 a | | | (0,3)

(3 rows)

In the case of page pruning, the first two pointers would be considered dead, but

here they have the unused status since no index entries are referring to them now:

=> SELECT * FROM index_page('vac_s',1);

itemoffset | htid | dead

−−−−−−−−−−−−+−−−−−−−+−−−−−−

1 | (0,3) | f

(1 row)

Pointers with the unused status are treated as free and can be reused by new row

versions.

Now the heap page appears in the visibility map; we can check it using the pg_vis-

ibility extension:

=> CREATE EXTENSION pg_visibility;

=> SELECT all_visible

FROM pg_visibility_map('vac',0);

all_visible

−−−−−−−−−−−−−

t

(1 row)

The page header has also received an attribute showing that all its tuples are visible

in all snapshots:

=> SELECT flags & 4 > 0 AS all_visible

FROM page_header(get_raw_page('vac',0));

all_visible

−−−−−−−−−−−−−

t

(1 row)

122

6.2 Database Horizon Revisited

6.2 Database Horizon Revisited

Vacuuming detects dead tuples based on the database horizon. This concept is so

fundamental that it makes sense to get back to it once again.

Let’s restart our experiment from the very beginning:

=> TRUNCATE vac;

=> INSERT INTO vac(id,s) VALUES (1,'A');

=> UPDATE vac SET s = 'B';

But this time, before updating the row, we are going to open another transaction

that will hold the database horizon (it can be almost any transaction p. ���, except for

a virtual one executed at the Read Committed isolation level). For example, this

transaction can modify some rows in another table.

=> BEGIN;

=> UPDATE accounts SET amount = 0;

=> UPDATE vac SET s = 'C';

Now our table contains three tuples, and the index contains three references. Let’s

vacuum the table and see what changes:

=> VACUUM vac;

=> SELECT * FROM heap_page('vac',0);

ctid | state | xmin | xmax | hhu | hot | t_ctid

−−−−−−−+−−−−−−−−+−−−−−−−+−−−−−−−+−−−−−+−−−−−+−−−−−−−−

(0,1) | unused | | | | |

(0,2) | normal | 833 c | 835 c | | | (0,3)

(0,3) | normal | 835 c | 0 a | | | (0,3)

(3 rows)

=> SELECT * FROM index_page('vac_s',1);

itemoffset | htid | dead

−−−−−−−−−−−−+−−−−−−−+−−−−−−

1 | (0,2) | f

2 | (0,3) | f

(2 rows)

123

Chapter 6 Vacuum and Autovacuum

While the previous run left only one tuple in the page, now we have two of them:

������ has decided that version (�,�) cannot be removed yet. The reason is the

database horizon, which is defined by an unfinished transaction in this case:

=> SELECT backend_xmin FROM pg_stat_activity

WHERE pid = pg_backend_pid();

backend_xmin

−−−−−−−−−−−−−−

834

(1 row)

We can use the ������� clause when calling ������ to observe what is going on:

=> VACUUM VERBOSE vac;

INFO: vacuuming "public.vac"

INFO: table "vac": found 0 removable, 2 nonremovable row versions

in 1 out of 1 pages

DETAIL: 1 dead row versions cannot be removed yet, oldest xmin: 834

Skipped 0 pages due to buffer pins, 0 frozen pages.

CPU: user: 0.00 s, system: 0.00 s, elapsed: 0.00 s.

VACUUM

The output shows the following information:

• ������ has detected no tuples that can be removed (0 ���������).

• Two tuples must not be removed (2 ������������).

• One of the nonremovable tuples is dead (1 ����), the other is in use.

• The current horizon respected by ������ (������ ����) is the horizon of the

active transaction.

Once the active transaction completes, the database horizon moves forward, and

vacuuming can continue:

=> COMMIT;

124

6.2 Database Horizon Revisited

=> VACUUM VERBOSE vac;

INFO: vacuuming "public.vac"

INFO: scanned index "vac_s" to remove 1 row versions

DETAIL: CPU: user: 0.00 s, system: 0.00 s, elapsed: 0.00 s

INFO: table "vac": removed 1 dead item identifiers in 1 pages

DETAIL: CPU: user: 0.00 s, system: 0.00 s, elapsed: 0.00 s

INFO: index "vac_s" now contains 1 row versions in 2 pages

DETAIL: 1 index row versions were removed.

0 index pages were newly deleted.

0 index pages are currently deleted, of which 0 are currently

reusable.

CPU: user: 0.00 s, system: 0.00 s, elapsed: 0.00 s.

INFO: table "vac": found 1 removable, 1 nonremovable row versions

in 1 out of 1 pages

DETAIL: 0 dead row versions cannot be removed yet, oldest xmin: 836

Skipped 0 pages due to buffer pins, 0 frozen pages.

CPU: user: 0.00 s, system: 0.00 s, elapsed: 0.00 s.

VACUUM

������ has detected and removed a dead tuple beyond the new database horizon.

Now the page contains no outdated row versions; the only version remaining is the

current one:

=> SELECT * FROM heap_page('vac',0);

ctid | state | xmin | xmax | hhu | hot | t_ctid

−−−−−−−+−−−−−−−−+−−−−−−−+−−−−−−+−−−−−+−−−−−+−−−−−−−−

(0,1) | unused | | | | |

(0,2) | unused | | | | |

(0,3) | normal | 835 c | 0 a | | | (0,3)

(3 rows)

The index also contains only one entry:

=> SELECT * FROM index_page('vac_s',1);

itemoffset | htid | dead

−−−−−−−−−−−−+−−−−−−−+−−−−−−

1 | (0,3) | f

(1 row)

125

Chapter 6 Vacuum and Autovacuum

6.3 Vacuum Phases

The mechanism of vacuuming seems quite simple, but this impression is mislead-

ing. After all, both tables and indexes have to be processed concurrently, without

blocking other processes. To enable such operation, vacuuming of each table is

carried out in several phases.1

It all starts with scanning a table in search of dead tuples; if found, they are first

removed from indexes and then from the table itself. If too many dead tuples have

to be vacuumed in one go, this process is repeated. Eventually, heap truncation

may be performed.

Heap Scan

In the first phase, a heap scan is performed.2 The scanning process takes the vis-

ibility map into account: all pages tracked in this map are skipped because they

are sure to contain no outdated tuples. If a tuple is beyond the horizon and is not

required anymore, its �� is added to a special tid array. Such tuples cannot be re-

moved yet because they may still be referenced from indexes.

The tid array resides in the local memory of the ������ process; the size of the

allocated memory chunk is defined by the64MB maintenance_work_mem parameter. The

whole chunk is allocated at once rather than on demand. However, the allocated

memory never exceeds the volume required in the worst-case scenario, so if the

table is small, vacuuming may use less memory than specified in this parameter.

Index Vacuuming

The first phase can have two outcomes: either the table is scanned in full, or the

memory allocated for the tid array is filled up before this operation completes. In

any case, index vacuuming begins.3 In this phase, each of the indexes created on

1 backend/access/heap/vacuumlazy.c, heap_vacuum_rel function
2 backend/access/heap/vacuumlazy.c, lazy_scan_heap function
3 backend/access/heap/vacuumlazy.c, lazy_vacuum_all_indexes function

126

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/heap/vacuumlazy.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/heap/vacuumlazy.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/heap/vacuumlazy.c;hb=REL_14_STABLE

6.3 Vacuum Phases

the table is fully scanned to find all the entries that refer to the tuples registered in

the tid array. These entries are removed from index pages.

An index can help you quickly get to a heap tuple by its index key, but there is no way to

quickly find an index entry by the corresponding tuple ��. This functionality is currently

being implemented for �-trees,1 but this work is not completed yet.

If there are several indexes bigger than the 512kBmin_parallel_index_scan_size value, they

can be vacuumed v. ��by background workers running in parallel. Unless the level

of parallelism is explicitly defined by the parallel N clause, ������ launches one

worker per suitable index (within the general limits imposed on the number of

background workers).2 One index cannot be processed by several workers.

During the index vacuuming phase, Postgre��� updates the free space map and

calculates statistics on vacuuming. However, this phase is skipped if rows are only

inserted (and are neither deleted nor updated) because the table contains no dead

tuples in this case. Then an index scan will be forced only once at the very end, as

part of a separate phase of index cleanup.3

The index vacuuming phase leaves no references to outdated heap tuples in in-

dexes, but the tuples themselves are still present in the table. It is perfectly normal:

index scans cannot find any dead tuples, while sequential scans of the table rely

on visibility rules to filter them out.

Heap Vacuuming

Then the heap vacuuming phase begins.4 The table is scanned again to remove the

tuples registered in the tid array and free the corresponding pointers. Now that all

the related index references have been removed, it can be done safely.

The space recovered by ������ is reflected in the free space map, while the pages

that now contain only the current tuples visible in all snapshots are tagged in the

visibility map.

1 commitfest.postgresql.org/21/1802
2 postgresql.org/docs/14/bgworker.html
3 backend/access/heap/vacuumlazy.c, lazy_cleanup_all_indexes function

backend/access/nbtree/nbtree.c, btvacuumcleanup function
4 backend/access/heap/vacuumlazy.c, lazy_vacuum_heap function

127

https://commitfest.postgresql.org/21/1802
https://postgresql.org/docs/14/bgworker.html
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/heap/vacuumlazy.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/nbtree/nbtree.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/heap/vacuumlazy.c;hb=REL_14_STABLE

Chapter 6 Vacuum and Autovacuum

If the table was not read in full during the heap scan phase, the tid array is cleared,

and the heap scan is resumed from where it left off last time.

Heap Truncation

Vacuumed heap pages contain some free space; occasionally, you may be lucky to

clear the whole page. If you get several empty pages at the end of the file, vacuum-

ing can “bite off” this tail and return the reclaimed space to the operating system.

It happens during heap truncation,1 which is the final vacuum phase.

Heap truncation requires a short exclusivep. ��� lock on the table. To avoid holding other

processes for too long, attempts to acquire a lock do not exceed five seconds.

Since the table has to be locked, truncation is only performed if the empty tail takes

at least 1

16
of the table or has reached the length of �,��� pages. These thresholds

are hardcoded and cannot be configured.

If, despite all these precautions, table locks still cause any issuesv. �� , truncation can be

disabled altogether using the vacuum_truncate and toast.vacuum_truncate storage

parameters.

6.4 Analysis

When talking about vacuuming, we have to mention yet another task that is

closely related to it, even though there is no formal connection between them.

It is analysis,2p. ��� or gathering statistical information for the query planner. The

collected statistics include the number of rows (pg_class.reltuples) and pages

(pg_class.relpages) in relations, data distribution within columns, and some other

information.

You can run the analysis manually using the ������� command,3 or combine it with

vacuuming by calling ������ �������. However, these two tasks are still performed

sequentially, so there is no difference in terms of performance.

1 backend/access/heap/vacuumlazy.c, lazy_truncate_heap function
2 postgresql.org/docs/14/routine-vacuuming.html#VACUUM-FOR-STATISTICS
3 backend/commands/analyze.c

128

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/heap/vacuumlazy.c;hb=REL_14_STABLE
https://postgresql.org/docs/14/routine-vacuuming.html#VACUUM-FOR-STATISTICS
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/commands/analyze.c;hb=REL_14_STABLE

6.5 Automatic Vacuum and Analysis

Historically, ������ ������� appeared first, in version �.�, while a separate ������� com-

mand was not implemented until version �.�. In earlier versions, statistics were collected

by a ��� script.

Automatic vacuum and analysis are set up in a similar way, so it makes sense to

discuss them together.

6.5 Automatic Vacuum and Analysis

Unless the database horizon is held up for a long time, routine vacuuming should

cope with its work. But how often do we need to call the ������ command?

If a frequently updated table is vacuumed too seldom, it will grow bigger than de-

sired. Besides, it may accumulate too many changes, and then the next ������ run

will have to make several passes over the indexes.

If the table is vacuumed too often, the serverwill be busywithmaintenance instead

of useful work.

Furthermore, typicalworkloadsmay change over time, so having a fixed vacuuming

schedule will not help anyway: themore often the table is updated, themore often

it has to be vacuumed.

This problem is solved by autovacuum,1 which launches vacuum and analysis pro-

cesses based on the intensity of table updates.

About the Autovacuum Mechanism

When autovacuum is enabled (onautovacuum configuration parameter is on), the au-

tovacuum launcher process is always running in the system. This process defines

the autovacuum schedule and maintains the list of “active” databases based on us-

age statistics. Such statistics are collected if the ontrack_counts parameter is enabled.

Do not switch off these parameters, otherwise autovacuum will not work.

1 postgresql.org/docs/14/routine-vacuuming.html#AUTOVACUUM

129

https://postgresql.org/docs/14/routine-vacuuming.html#AUTOVACUUM

Chapter 6 Vacuum and Autovacuum

Once in1min autovacuum_naptime, the autovacuum launcher starts an autovacuum

worker1 for each active database in the list (these workers are spawned by post-

master, as usual). Consequently, if there are N active databases in the cluster, N

workers are spawned within the autovacuum_naptime interval. But the total num-

ber of autovacuumworkers running in parallel cannot exceed the threshold defined

by the3 autovacuum_max_workers parameter.

Autovacuum workers are very similar to regular background workers, but they appeared

much earlier than this general mechanism of task management. It was decided to

leave the autovacuum implementation unchanged, so autovacuum workers do not use

max_worker_processes slots.

Once started, the background worker connects to the specified database and builds

two lists:

• the list of all tables, materialized views, and ����� tables to be vacuumed

• the list of all tables and materialized views to be analyzed (����� tables are

not analyzed because they are always accessed via an index)

Then the selected objects are vacuumed or analyzed one by one (or undergo both

operations), and once the job is complete, the worker is terminated.

Automatic vacuuming works similar to the manual one initiated by the ������

command, but there are some nuances:

• Manual vacuuming accumulates tuple ��s in a memory chunk of the mainte-

nance_work_mem size. However, using the same limit for autovacuum is un-

desirable, as it can result in excessive memory consumption: there may be

several autovacuum workers running in parallel, and each of them will get

maintenance_work_mem of memory at once. Instead, Postgre��� provides a

separate memory limit for autovacuum processes, which is defined by the au-

tovacuum_work_mem parameter.

By default, the−1 autovacuum_work_mem parameter falls back on the regular

maintenance_work_mem limit, so if the autovacuum_max_workers value is high,

you may have to adjust the autovacuum_work_mem value accordingly.

1 backend/postmaster/autovacuum.c

130

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/postmaster/autovacuum.c;hb=REL_14_STABLE

6.5 Automatic Vacuum and Analysis

• Concurrent processing of several indexes created on one table can be per-

formed only by manual vacuuming; using autovacuum for this purpose would

result in a large number of parallel processes, so it is not allowed.

If a worker fails to complete all the scheduled tasks within the autovacuum_naptime

interval, the autovacuum launcher spawns another worker to be run in parallel in

that database. The second worker will build its own lists of objects to be vacuumed

and analyzed and will start processing them. There is no parallelism at the table

level; only different tables can be processed concurrently.

Which Tables Need to be Vacuumed?

You can disable autovacuum at the table level—although it is hard to imagine why

it could be necessary. There are two storage parameters provided for this purpose,

one for regular tables and the other for ����� tables:

• autovacuum_enabled

• toast.autovacuum_enabled

In usual circumstances, autovacuum is triggered either by p. ���accumulation of dead

tuples or by insertion of new rows.

Dead tuple accumulation. Dead tuples are constantly being counted by the statis-

tics collector; their current number is shown in the system catalog table called

pg_stat_all_tables.

It is assumed that dead tuples have to be vacuumed if they exceed the threshold

defined by the following two parameters:

• 50autovacuum_vacuum_threshold, which specifies the number of dead tuples

(an absolute value)

• 0.2autovacuum_vacuum_scale_factor, which sets the fraction of dead tuples in a

table

131

Chapter 6 Vacuum and Autovacuum

Vacuuming is required if the following condition is satisfied:

pg_stat_all_tables.n_dead_tup >

autovacuum_vacuum_threshold +

autovacuum_vacuum_scale_factor × pg_class.reltuples

Themain parameter here is of course autovacuum_vacuum_scale_factor: its value is

important for large tables (and it is large tables that are likely to cause themajority

of issues). The default value of ��% seems too big andmay have to be significantly

reduced.

For different tables, optimal parameter values may vary: they largely depend on

the table size andworkload type. It makes sense to setmore or less adequate initial

values and then override them for particular tables using storage parameters:

• autovacuum_vacuum_threshold and toast.autovacuum_vacuum_threshold

• autovacuum_vacuum_scale_factor and toast.autovacuum_vacuum_scale_factor

Row insertions.v. �� If rows are only inserted and are neither deleted nor updated, the

table contains no dead tuples. But such tables should also be vacuumed to freeze

heap tuples in advancep. ��� and update the visibility map (thus enabling index-only

scansp. ���).

A table will be vacuumed if the number of rows inserted since the previous vacu-

uming exceeds the threshold defined by another similar pair of parameters:

•1000 autovacuum_vacuum_insert_threshold

•0.2 autovacuum_vacuum_insert_scale_factor

The formula is as follows:

pg_stat_all_tables.n_ins_since_vacuum >

autovacuum_vacuum_insert_threshold +

autovacuum_vacuum_insert_scale_factor × pg_class.reltuples

132

6.5 Automatic Vacuum and Analysis

Like in the previous example, you can override these values at the table level using

storage parameters:

• autovacuum_vacuum_insert_threshold and its ����� counterpart

• autovacuum_vacuum_insert_scale_factor and its ����� counterpart

Which Tables Need to Be Analyzed?

Automatic analysis needs to process only modified rows, so the calculations are a

bit simpler than those for autovacuum.

It is assumed that a table has to be analyzed if the number of rows modified since

the previous analysis exceeds the threshold defined by the following two configu-

ration parameters:

• 50autovacuum_analyze_threshold

• 0.1autovacuum_analyze_scale_factor

Autoanalysis is triggered if the following condition is met:

pg_stat_all_tables.n_mod_since_analyze >

autovacuum_analyze_threshold +

autovacuum_analyze_scale_factor × pg_class.reltuples

To override autoanalysis settings for particular tables, you can use the same-name

storage parameters:

• autovacuum_analyze_threshold

• autovacuum_analyze_scale_factor

Since ����� tables are not analyzed, they have no corresponding parameters.

133

Chapter 6 Vacuum and Autovacuum

Autovacuum in Action

To formalize everything said in this section, let’s create two views that show which

tables currently need to be vacuumed and analyzed.1 The function used in these

views returns the current value of the passed parameter, taking into account that

this value can be redefined at the table level:

=> CREATE FUNCTION p(param text, c pg_class) RETURNS float

AS $$

SELECT coalesce(

-- use storage parameter if set

(SELECT option_value

FROM pg_options_to_table(c.reloptions)

WHERE option_name = CASE

-- for TOAST tables the parameter name is different

WHEN c.relkind = 't' THEN 'toast.' ELSE ''

END || param

),

-- else take the configuration parameter value

current_setting(param)

)::float;

$$ LANGUAGE sql;

This is how a vacuum-related view can look like:

=> CREATE VIEW need_vacuum AS

WITH c AS (

SELECT c.oid,

greatest(c.reltuples, 0) reltuples,

p('autovacuum_vacuum_threshold', c) threshold,

p('autovacuum_vacuum_scale_factor', c) scale_factor,

p('autovacuum_vacuum_insert_threshold', c) ins_threshold,

p('autovacuum_vacuum_insert_scale_factor', c) ins_scale_factor

FROM pg_class c

WHERE c.relkind IN ('r','m','t')

)

SELECT st.schemaname || '.' || st.relname AS tablename,

st.n_dead_tup AS dead_tup,

c.threshold + c.scale_factor * c.reltuples AS max_dead_tup,

st.n_ins_since_vacuum AS ins_tup,

c.ins_threshold + c.ins_scale_factor * c.reltuples AS max_ins_tup,

st.last_autovacuum

FROM pg_stat_all_tables st

JOIN c ON c.oid = st.relid;

1 backend/postmaster/autovacuum.c, relation_needs_vacanalyze function

134

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/postmaster/autovacuum.c;hb=REL_14_STABLE

6.5 Automatic Vacuum and Analysis

The max_dead_tup column shows the number of dead tuples that will trigger au-

tovacuum, whereas the max_ins_tup column shows the threshold value related to

insertion.

Here is a similar view for analysis:

=> CREATE VIEW need_analyze AS

WITH c AS (

SELECT c.oid,

greatest(c.reltuples, 0) reltuples,

p('autovacuum_analyze_threshold', c) threshold,

p('autovacuum_analyze_scale_factor', c) scale_factor

FROM pg_class c

WHERE c.relkind IN ('r','m')

)

SELECT st.schemaname || '.' || st.relname AS tablename,

st.n_mod_since_analyze AS mod_tup,

c.threshold + c.scale_factor * c.reltuples AS max_mod_tup,

st.last_autoanalyze

FROM pg_stat_all_tables st

JOIN c ON c.oid = st.relid;

Themax_mod_tup column shows the threshold value for autoanalysis.

To speed up the experiment, we will be starting autovacuum every second:

=> ALTER SYSTEM SET autovacuum_naptime = '1s';

=> SELECT pg_reload_conf();

Let’s truncate the vac table and then insert �,��� rows. Note that autovacuum is

turned off at the table level.

=> TRUNCATE TABLE vac;

=> INSERT INTO vac(id,s)

SELECT id, 'A' FROM generate_series(1,1000) id;

Here is what our vacuum-related view will show:

=> SELECT * FROM need_vacuum WHERE tablename = 'public.vac' \gx

−[RECORD 1]−−−+−−−−−−−−−−−

tablename | public.vac

dead_tup | 0

max_dead_tup | 50

ins_tup | 1000

max_ins_tup | 1000

last_autovacuum |

135

Chapter 6 Vacuum and Autovacuum

The actual threshold value is max_dead_tup = 50, although the formula listed

above suggests that it should be 50 + 0.2 × 1000 = 250. The thing is that statistics

on this table are not available yet since the ������ command does not update it:

=> SELECT reltuples FROM pg_class WHERE relname = 'vac';

reltuples

−−−−−−−−−−−

−1

(1 row)

The pg_class.reltuples valuev. �� is set to −1; this special constant is used instead of

zero to differentiate between a table without any statistics and a really empty table

that has already been analyzed. For the purpose of calculation, the negative value

is taken as zero, which gives us 50 + 0.2 × 0 = 50.

The value of max_ins_tup = 1000 differs from the projected value of �,��� for the

same reason.

Let’s have a look at the analysis view:

=> SELECT * FROM need_analyze WHERE tablename = 'public.vac' \gx

−[RECORD 1]−−−−+−−−−−−−−−−−

tablename | public.vac

mod_tup | 1006

max_mod_tup | 50

last_autoanalyze |

We have updated (inserted in this case) �,��� rows; as a result, the threshold is

exceeded: since the table size is unknown, it is currently set to ��. It means that

autoanalysis will be triggered immediately when we turn it on:

=> ALTER TABLE vac SET (autovacuum_enabled = on);

Once the table analysis completes, the threshold is reset to an adequate value of

��� rows.

=> SELECT reltuples FROM pg_class WHERE relname = 'vac';

reltuples

−−−−−−−−−−−

1000

(1 row)

136

6.5 Automatic Vacuum and Analysis

=> SELECT * FROM need_analyze WHERE tablename = 'public.vac' \gx

−[RECORD 1]−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

tablename | public.vac

mod_tup | 0

max_mod_tup | 150

last_autoanalyze | 2023−03−06 14:00:45.533464+03

Let’s get back to autovacuum:

=> SELECT * FROM need_vacuum WHERE tablename = 'public.vac' \gx

−[RECORD 1]−−−+−−−−−−−−−−−

tablename | public.vac

dead_tup | 0

max_dead_tup | 250

ins_tup | 1000

max_ins_tup | 1200

last_autovacuum |

The max_dead_tup and max_ins_tup values have also been updated based on the

actual table size discovered by the analysis.

Vacuuming will be started if at least one of the following conditions is met:

• More than ��� dead tuples are accumulated.

• More than ��� rows are inserted into the table. v. ��

Let’s turn off autovacuum again and update ��� rows so that the threshold value

is exceeded by one:

=> ALTER TABLE vac SET (autovacuum_enabled = off);

=> UPDATE vac SET s = 'B' WHERE id <= 251;

=> SELECT * FROM need_vacuum WHERE tablename = 'public.vac' \gx

−[RECORD 1]−−−+−−−−−−−−−−−

tablename | public.vac

dead_tup | 251

max_dead_tup | 250

ins_tup | 1000

max_ins_tup | 1200

last_autovacuum |

Now the trigger condition is satisfied. Let’s enable autovacuum; after a while, we

will see that the table has been processed, and its usage statistics has been reset:

137

Chapter 6 Vacuum and Autovacuum

=> ALTER TABLE vac SET (autovacuum_enabled = on);

=> SELECT * FROM need_vacuum WHERE tablename = 'public.vac' \gx

−[RECORD 1]−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

tablename | public.vac

dead_tup | 0

max_dead_tup | 250

ins_tup | 0

max_ins_tup | 1200

last_autovacuum | 2023−03−06 14:00:51.736815+03

6.6 Managing the Load

Operating at the page level, vacuuming does not block other processes; but never-

theless, it increases the system load and can have a noticeable impact on perfor-

mance.

Vacuum Throttling

To control vacuuming intensity, Postgre��� makes regular pauses in table pro-

cessing. After completing about200 vacuum_cost_limit units of work, the process falls

asleep and remains idle for the0 vacuum_cost_delay time interval.

The default zero value of vacuum_cost_delay means that routine vacuuming actu-

ally never sleeps, so the exact vacuum_cost_limit value makes no difference. It is

assumed that if administrators have to resort to manual vacuuming, they are likely

to expect its completion as soon as possible.

If the sleep time is set, then the process will pause each time it has spent vac-

uum_cost_limit units of work on page processing in the buffer cachep. ��� . The cost of

each page read is estimated at1 vacuum_cost_page_hit units if the page is found in

the buffer cache, or2 vacuum_cost_page_miss units otherwise.1 If a clean page is dirt-

ied by vacuum, it adds another20 vacuum_cost_page_dirty units.2

1 backend/storage/buffer/bufmgr.c, ReadBuffer_common function
2 backend/storage/buffer/bufmgr.c, MarkBufferDirty function

138

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/storage/buffer/bufmgr.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/storage/buffer/bufmgr.c;hb=REL_14_STABLE

6.6 Managing the Load

If you keep the default value of the vacuum_cost_limit parameter, ������ can pro-

cess up to ��� pages per cycle in the best-case scenario (if all the pages are cached,

and no pages are dirtied by ������) and only nine pages in the worst case (if all the

pages are read from disk and become dirty).

Autovacuum Throttling

Throttling for autovacuum1 is quite similar to ������ throttling. However, auto-

vacuum can be run with a different intensity as it has its own set of parameters:

• −1autovacuum_vacuum_cost_limit

• 2msautovacuum_vacuum_cost_delay

If any of these parameters is set to −1, it falls back on the corresponding parameter

for regular ������. Thus, the autovacuum_vacuum_cost_limit parameter relies on

the vacuum_cost_limit value by default.

Prior to version ��, the default value of autovacuum_vacuum_cost_delay was �� ms, and it

led to very poor performance on modern hardware.

Autovacuumwork units are limited to autovacuum_vacuum_cost_limit per cycle, and

since they are shared between all the workers, the overall impact on the system re-

mains roughly the same, regardless of their number. So if you need to speed up au-

tovacuum, both the autovacuum_max_workers and autovacuum_vacuum_cost_limit

values should be increased proportionally.

If required, you can override these settings for particular tables by setting the fol-

lowing storage parameters:

• autovacuum_vacuum_cost_delay and toast.autovacuum_vacuum_cost_delay

• autovacuum_vacuum_cost_limit and toast.autovacuum_vacuum_cost_limit

1 backend/postmaster/autovacuum.c, autovac_balance_cost function

139

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/postmaster/autovacuum.c;hb=REL_14_STABLE

Chapter 6 Vacuum and Autovacuum

6.7 Monitoring

If vacuuming is monitored, you can detect situations when dead tuples cannot be

removed in one go, as references to them do not fit the maintenance_work_mem

memory chunk. In this case, all the indexes will have to be fully scanned several

times. It can take a substantial amount of time for large tables, thus creating a

significant load on the system. Even though queries will not be blocked, extra �/�

operations can seriously limit system throughput.

Such issues can be corrected either by vacuuming the table more often (so that

each run cleans up fewer tuples) or by allocating more memory.

Monitoring Vacuum

When run with the ������� clause, the ������ command performs the cleanup and

displays the status report, whereas the pg_stat_progress_vacuumv. �.� view shows the

current state of the started process.

There is also a similar view for analysisv. �� (pg_stat_progress_analyze), even though it

is usually performed very fast and is unlikely to cause any issues.

Let’s insert more rows into the table and update them all so that ������ has to run

for a noticeable period of time:

=> TRUNCATE vac;

=> INSERT INTO vac(id,s)

SELECT id, 'A' FROM generate_series(1,500000) id;

=> UPDATE vac SET s = 'B';

For the purpose of this demonstration, we will limit the amount of memory allo-

cated for the tid array by � ��:

=> ALTER SYSTEM SET maintenance_work_mem = '1MB';

=> SELECT pg_reload_conf();

Launch the ������ command and query the pg_stat_progress_vacuum view several

times while it is running:

140

6.7 Monitoring

=> VACUUM VERBOSE vac;

=> SELECT * FROM pg_stat_progress_vacuum \gx

−[RECORD 1]−−−−−−+−−−−−−−−−−−−−−−−−−

pid | 14531

datid | 16391

datname | internals

relid | 16479

phase | vacuuming indexes

heap_blks_total | 17242

heap_blks_scanned | 3009

heap_blks_vacuumed | 0

index_vacuum_count | 0

max_dead_tuples | 174761

num_dead_tuples | 174522

=> SELECT * FROM pg_stat_progress_vacuum \gx

−[RECORD 1]−−−−−−+−−−−−−−−−−−−−−−−−−

pid | 14531

datid | 16391

datname | internals

relid | 16479

phase | vacuuming indexes

heap_blks_total | 17242

heap_blks_scanned | 17242

heap_blks_vacuumed | 6017

index_vacuum_count | 2

max_dead_tuples | 174761

num_dead_tuples | 150956

In particular, this view shows:

• phase—the name of the current vacuumphase (I have described themain ones,

but there are actually more of them1)

• heap_blks_total—the total number of pages in a table

• heap_blks_scanned—the number of scanned pages

• heap_blks_vacuumed—the number of vacuumed pages

• index_vacuum_count—the number of index scans

1 postgresql.org/docs/14/progress-reporting.html#VACUUM-PHASES

141

https://postgresql.org/docs/14/progress-reporting.html#VACUUM-PHASES

Chapter 6 Vacuum and Autovacuum

The overall vacuuming progress is defined by the ratio of heap_blks_vacuumed to

heap_blks_total, but you have to keep in mind that it changes in spurts because of

index scans. In fact, it is more important to pay attention to the number of vacuum

cycles: if this value is greater than one, it means that the allocated memory was

not enough to complete vacuuming in one go.

You can see thewhole picture in the output of the ������ ������� command,which

has already finished by this time:

INFO: vacuuming "public.vac"

INFO: scanned index "vac_s" to remove 174522 row versions

DETAIL: CPU: user: 0.02 s, system: 0.00 s, elapsed: 0.05 s

INFO: table "vac": removed 174522 dead item identifiers in

3009 pages

DETAIL: CPU: user: 0.00 s, system: 0.01 s, elapsed: 0.07 s

INFO: scanned index "vac_s" to remove 174522 row versions

DETAIL: CPU: user: 0.02 s, system: 0.00 s, elapsed: 0.05 s

INFO: table "vac": removed 174522 dead item identifiers in

3009 pages

DETAIL: CPU: user: 0.00 s, system: 0.00 s, elapsed: 0.01 s

INFO: scanned index "vac_s" to remove 150956 row versions

DETAIL: CPU: user: 0.02 s, system: 0.00 s, elapsed: 0.04 s

INFO: table "vac": removed 150956 dead item identifiers in

2603 pages

DETAIL: CPU: user: 0.00 s, system: 0.00 s, elapsed: 0.00 s

INFO: index "vac_s" now contains 500000 row versions in

932 pages

DETAIL: 500000 index row versions were removed.

433 index pages were newly deleted.

433 index pages are currently deleted, of which 0 are

currently reusable.

CPU: user: 0.00 s, system: 0.00 s, elapsed: 0.00 s.

INFO: table "vac": found 500000 removable, 500000

nonremovable row versions in 17242 out of 17242 pages

DETAIL: 0 dead row versions cannot be removed yet, oldest

xmin: 851

Skipped 0 pages due to buffer pins, 0 frozen pages.

CPU: user: 0.20 s, system: 0.03 s, elapsed: 0.53 s.

VACUUM

index
vacuum

table
vacuum

index
vacuum

table
vacuum

index
vacuum

table
vacuum

All in all, there have been three index scans; each scan has removed ���,���

pointers to dead tuples at the most. This value is defined by the number of

tid pointers (each of them takes � bytes) that can fit into an array of the main-

142

6.7 Monitoring

tenance_work_mem size. The maximum size possible is shown by pg_stat_prog-

ress_vacuum.max_dead_tuples, but the actually used space is always a bit smaller. It

guarantees that when the next page is read, all its pointers to dead tuples, no mat-

ter how many of them are located in this page, will fit into the remaining memory.

Monitoring Autovacuum

The main approach to monitoring autovacuum is to print its status information

(which is similar to the output of the ������ ������� command) into the server

log for further analysis. If the −1log_autovacuum_min_duration parameter is set to

zero, all autovacuum runs are logged:

=> ALTER SYSTEM SET log_autovacuum_min_duration = 0;

=> SELECT pg_reload_conf();

=> UPDATE vac SET s = 'C';

UPDATE 500000

postgres$ tail -n 13 /home/postgres/logfile

2023−03−06 14:01:13.727 MSK [17351] LOG: automatic vacuum of table

"internals.public.vac": index scans: 3

pages: 0 removed, 17242 remain, 0 skipped due to pins, 0

skipped frozen

tuples: 500000 removed, 500000 remain, 0 are dead but not

yet removable, oldest xmin: 853

index scan needed: 8622 pages from table (50.01% of total)

had 500000 dead item identifiers removed

index "vac_s": pages: 1428 in total, 496 newly deleted, 929

currently deleted, 433 reusable

avg read rate: 12.404 MB/s, avg write rate: 14.810 MB/s

buffer usage: 46038 hits, 5670 misses, 6770 dirtied

WAL usage: 40390 records, 15062 full page images, 89188595

bytes

system usage: CPU: user: 0.31 s, system: 0.33 s, elapsed:

3.57 s

2023−03−06 14:01:14.117 MSK [17351] LOG: automatic analyze of table

"internals.public.vac"

avg read rate: 41.081 MB/s, avg write rate: 0.020 MB/s

buffer usage: 15355 hits, 2035 misses, 1 dirtied

system usage: CPU: user: 0.14 s, system: 0.00 s, elapsed:

0.38 s

143

Chapter 6 Vacuum and Autovacuum

To track the list of tables that have to be vacuumed and analyzed, you can use

the need_vacuum and need_analyze views, which we have already reviewed. If this

list grows, it means that autovacuum does not cope with the load and has to be

sped up by either reducing the gap (autovacuum_vacuum_cost_delay) or increasing

the amount of work done between the gaps (autovacuum_vacuum_cost_limit). It is

not unlikely that the degree of parallelism will also have to be increased (autovac-

uum_max_workers).

144

7
Freezing

7.1 Transaction ID Wraparound

In Postgre���, a transaction �� takes �� bits. Four billions seems to be quite a big

number, but it can be exhausted very fast if the system is being actively used. For

example, for an average load of �,��� transactions per second (excluding virtual

ones), it will happen in about six weeks of continuous operation.

Once all the numbers are used up, the counter has to be reset to start the next

round (this situation is called a “wraparound”). But a transaction with a smaller

�� can only be considered older than another transaction with a bigger �� if the

assigned numbers are always increasing. So the counter cannot simply start using

the same numbers anew after being reset.

Allocating �� bits for transaction ��s would have eliminated this problem alto-

gether, so why doesn’t Postgre��� take advantage of it? The thing is that each

tuple header has to store ��s for two transactions: xmin and xmax. p. ��The header is

quite big already (at least �� bytes if data alignment is taken into account), and

adding more bits would have given another � bytes.

Postgre��� does implement ��-bit transaction ��s1 that extend a regular �� by a ��-bit

epoch, but they are used only internally and never get into data pages.

To correctly handlewraparound,Postgre��� has to compare the age of transactions

(defined as the number of subsequent transactions that have appeared since the

start of this transaction) rather than transaction ��s. Thus, instead of the terms less

than and greater than we should use the concepts of older (precedes) and younger

(follows).

1 include/access/transam.h, FullTransactionId type

145

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/include/access/transam.h;hb=REL_14_STABLE

Chapter 7 Freezing

In the code, this comparison is implemented by simply using the ��-bit arithmetic:

first the difference between ��-bit transaction ��s is found, and then this result is

compared to zero.1

To better visualize this idea, you can imagine a sequence of transaction ��s as a

clock face. For each transaction, half of the circle in the clockwise direction will be

in the future, while the other half will be in the past.

fu
tu
re

p
a
st

T1 T1

T2

T1T1

T2

T3

However, this visualization has an unpleasant catch. An old transaction (��) is in

the remote past as compared to more recent transactions. But sooner or later a

new transaction will see it in the half of the circle related to the future. If it were

really so, it would have a catastrophic impact: from now on, all newer transactions

would not see the changes made by transaction ��.

7.2 Tuple Freezing and Visibility Rules

To prevent such “time travel,” vacuuming performs one more task (in addition to

page cleanup):2 it searches for tuples that are beyond the database horizon (so they

are visible in all snapshots) and tags them in a special way, that is, freezesp. ��� them.

For frozen tuples, visibility rules do not have to take xmin into account since such

tuples are known to be visible in all snapshots, so this transaction �� can be safely

reused.

1 backend/access/transam/transam.c, TransactionIdPrecedes function
2 postgresql.org/docs/14/routine-vacuuming.html#VACUUM-FOR-WRAPAROUND

146

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/transam/transam.c;hb=REL_14_STABLE
https://postgresql.org/docs/14/routine-vacuuming.html#VACUUM-FOR-WRAPAROUND

7.2 Tuple Freezing and Visibility Rules

You can imagine that the xmin transaction �� is replaced in frozen tuples by a hy-

pothetical “minus infinity” (pictured as a snowflake below); it is a sign that this

tuple is created by a transaction that is so far in the past that its actual �� does

not matter anymore. Yet in reality xmin remains unchanged, whereas the freezing

attribute is defined by a combination of two hint bits: committed and aborted.

T1̂

T2

T3

T4

^

^

T3

T4T1

T1̂

^

^

T4T1

T2

Many sources (including the documentation) mention FrozenTransactionId = 2. It is the

“minus infinity” that I have already referred to—this value used to replace xmin in versions

prior to �.�, but now hint bits are employed instead. As a result, the original transaction

�� remains in the tuple, which is convenient for both debugging and support. Old systems

can still contain the obsolete FrozenTransactionId, even if they have been upgraded to

higher versions.

The xmax transaction �� does not participate in freezing in any way. It is only

present in outdated tuples, and once such tuples stop being visible in all snap-

shots (which means that the xmax �� is beyond the database horizon), they will be

vacuumed away.

Let’s create a new table for our experiments. The fillfactor parameter should be set

to the lowest value so that each page can accommodate only two tuples—it will be

easier to track the progress this way. Wewill also disable autovacuum tomake sure

that the table is only cleaned up on demand.

=> CREATE TABLE tfreeze(

id integer,

s char(300)

)

WITH (fillfactor = 10, autovacuum_enabled = off);

147

Chapter 7 Freezing

We are going to create yet another flavor of the function that displays heap pages

using pageinspect. Dealing with a range of pages, it will show the values of the

freezing attribute (f) and the xmin transaction age for each tuple (it will have to

call the age system function—the age itself is not stored in heap pages, of course):

=> CREATE FUNCTION heap_page(

relname text, pageno_from integer, pageno_to integer

)

RETURNS TABLE(

ctid tid, state text,

xmin text, xmin_age integer, xmax text

) AS $$

SELECT (pageno,lp)::text::tid AS ctid,

CASE lp_flags

WHEN 0 THEN 'unused'

WHEN 1 THEN 'normal'

WHEN 2 THEN 'redirect to '||lp_off

WHEN 3 THEN 'dead'

END AS state,

t_xmin || CASE

WHEN (t_infomask & 256+512) = 256+512 THEN ' f'

WHEN (t_infomask & 256) > 0 THEN ' c'

WHEN (t_infomask & 512) > 0 THEN ' a'

ELSE ''

END AS xmin,

age(t_xmin) AS xmin_age,

t_xmax || CASE

WHEN (t_infomask & 1024) > 0 THEN ' c'

WHEN (t_infomask & 2048) > 0 THEN ' a'

ELSE ''

END AS xmax

FROM generate_series(pageno_from, pageno_to) p(pageno),

heap_page_items(get_raw_page(relname, pageno))

ORDER BY pageno, lp;

$$ LANGUAGE sql;

Now let’s insert some rows into the table and run the ������ command that will

immediately create the visibility map.

=> CREATE EXTENSION IF NOT EXISTS pg_visibility;

=> INSERT INTO tfreeze(id, s)

SELECT id, 'FOO'||id FROM generate_series(1,100) id;

INSERT 0 100

148

7.3 Managing Freezing

We are going to observe the first two heap pages using the pg_visibility exten-

sion. When vacuuming completes, both pages get tagged in the visibility map

(all_visible) but not in the freeze map (all_frozen v. �.�), as they still contain some un-

frozen tuples:

=> VACUUM tfreeze;

=> SELECT *

FROM generate_series(0,1) g(blkno),

pg_visibility_map('tfreeze',g.blkno)

ORDER BY g.blkno;

blkno | all_visible | all_frozen

−−−−−−−+−−−−−−−−−−−−−+−−−−−−−−−−−−

0 | t | f

1 | t | f

(2 rows)

The xmin_age of the transaction that has created the rows equals 1 because it is

the latest transaction performed in the system:

=> SELECT * FROM heap_page('tfreeze',0,1);

ctid | state | xmin | xmin_age | xmax

−−−−−−−+−−−−−−−−+−−−−−−−+−−−−−−−−−−+−−−−−−

(0,1) | normal | 856 c | 1 | 0 a

(0,2) | normal | 856 c | 1 | 0 a

(1,1) | normal | 856 c | 1 | 0 a

(1,2) | normal | 856 c | 1 | 0 a

(4 rows)

7.3 Managing Freezing

There are four main parameters that control freezing. All of them represent trans-

action age and define when the following events happen:

• Freezing starts (vacuum_freeze_min_age).

• Aggressive freezing is performed (vacuum_freeze_table_age).

• Freezing is forced (autovacuum_freeze_max_age).

• Freezing receives priority v. ��(vacuum_failsafe_age).

149

Chapter 7 Freezing

Minimal Freezing Age

The50 million vacuum_freeze_min_age parameter defines the minimal freezing age of xmin

transactions. The lower its value, the higher the overhead: if a row is “hot” and is

actively being changed, then freezing all its newly created versions will be a wasted

effort. Setting this parameter to a relatively high value allows you to wait for a

while.

To observe the freezing process, let’s reduce this parameter value to one:

=> ALTER SYSTEM SET vacuum_freeze_min_age = 1;

=> SELECT pg_reload_conf();

Now update one row in the zero page. The new row version will get into the same

page because the fillfactor value is quite small:

=> UPDATE tfreeze SET s = 'BAR' WHERE id = 1;

The age of all transactions has been increased by one, and the heap pages now look

as follows:

=> SELECT * FROM heap_page('tfreeze',0,1);

ctid | state | xmin | xmin_age | xmax

−−−−−−−+−−−−−−−−+−−−−−−−+−−−−−−−−−−+−−−−−−

(0,1) | normal | 856 c | 2 | 857

(0,2) | normal | 856 c | 2 | 0 a

(0,3) | normal | 857 | 1 | 0 a

(1,1) | normal | 856 c | 2 | 0 a

(1,2) | normal | 856 c | 2 | 0 a

(5 rows)

At this point, the tuples that are older than vacuum_freeze_min_age = 1 are subject

to freezing. But vacuum will not process any pages tagged in the visibility mapp. ��� :

=> SELECT * FROM generate_series(0,1) g(blkno),

pg_visibility_map('tfreeze',g.blkno)

ORDER BY g.blkno;

blkno | all_visible | all_frozen

−−−−−−−+−−−−−−−−−−−−−+−−−−−−−−−−−−

0 | f | f

1 | t | f

(2 rows)

150

7.3 Managing Freezing

The previous ������ command has removed the visibility bit of the zero page, so

the tuple that has an appropriate xmin age in this page will be frozen. But the first

page will be skipped altogether:

=> VACUUM tfreeze;

=> SELECT * FROM heap_page('tfreeze',0,1);

ctid | state | xmin | xmin_age | xmax

−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−+−−−−−−−−−−+−−−−−−

(0,1) | redirect to 3 | | |

(0,2) | normal | 856 f | 2 | 0 a

(0,3) | normal | 857 c | 1 | 0 a

(1,1) | normal | 856 c | 2 | 0 a

(1,2) | normal | 856 c | 2 | 0 a

(5 rows)

Now the zero page appears in the visibility map again, and if nothing changes in

it, vacuuming will not return to this page anymore:

=> SELECT * FROM generate_series(0,1) g(blkno),

pg_visibility_map('tfreeze',g.blkno)

ORDER BY g.blkno;

blkno | all_visible | all_frozen

−−−−−−−+−−−−−−−−−−−−−+−−−−−−−−−−−−

0 | t | f

1 | t | f

(2 rows)

Age for Aggressive Freezing

As we have just seen, if a page contains only the current tuples that are visible in

all snapshots, vacuuming will not freeze them. To overcome this constraint, Post-

gre��� provides the 150

million

vacuum_freeze_table_age parameter. It defines the transaction

age that allows vacuuming to ignore the visibility map, so any heap page can be

frozen.

For each table, the system catalog keeps a transaction �� for which it is known that

all the older transactions are sure to be frozen. It is stored as relfrozenxid:

151

Chapter 7 Freezing

=> SELECT relfrozenxid, age(relfrozenxid)

FROM pg_class

WHERE relname = 'tfreeze';

relfrozenxid | age

−−−−−−−−−−−−−−+−−−−−

854 | 4

(1 row)

It is the age of this transaction that is compared to the vacuum_freeze_table_age

value to decide whether the time has come for aggressive freezing.

Thanks to the freeze mapv. �.� , there is no need to perform a full table scan during vac-

uuming: it is enough to check only those pages that do not appear in the map.

Apart from this important optimization, the freezemap also brings fault tolerance:

if vacuuming is interrupted, its next run will not have to get back to the pages that

have already been processed and are tagged in the map.

Postgre��� performs aggressive freezing of all pages in a table each time when

the number of transactions in the system reaches the vacuum_freeze_table_age −
vacuum_freeze_min_age limit (if the default values are used, it happens after each

��� million transactions). Thus, if the vacuum_freeze_min_age value is too big, it

can lead to excessive freezing and increased overhead.

To freeze the whole table, let’s reduce the vacuum_freeze_table_age value to four;

then the condition for aggressive freezing will be satisfied:

=> ALTER SYSTEM SET vacuum_freeze_table_age = 4;

=> SELECT pg_reload_conf();

Run the ������ command:

=> VACUUM VERBOSE tfreeze;

INFO: aggressively vacuuming "public.tfreeze"

INFO: table "tfreeze": found 0 removable, 100 nonremovable row

versions in 50 out of 50 pages

DETAIL: 0 dead row versions cannot be removed yet, oldest xmin: 858

Skipped 0 pages due to buffer pins, 0 frozen pages.

CPU: user: 0.00 s, system: 0.00 s, elapsed: 0.00 s.

VACUUM

152

7.3 Managing Freezing

Now that the whole table has been analyzed, the relfrozenxid value can be ad-

vanced—heap pages are guaranteed to have no older unfrozen xmin transactions:

=> SELECT relfrozenxid, age(relfrozenxid)

FROM pg_class

WHERE relname = 'tfreeze';

relfrozenxid | age

−−−−−−−−−−−−−−+−−−−−

857 | 1

(1 row)

The first page now contains only frozen tuples:

=> SELECT * FROM heap_page('tfreeze',0,1);

ctid | state | xmin | xmin_age | xmax

−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−+−−−−−−−−−−+−−−−−−

(0,1) | redirect to 3 | | |

(0,2) | normal | 856 f | 2 | 0 a

(0,3) | normal | 857 c | 1 | 0 a

(1,1) | normal | 856 f | 2 | 0 a

(1,2) | normal | 856 f | 2 | 0 a

(5 rows)

Besides, this page is tagged in the freeze map:

=> SELECT * FROM generate_series(0,1) g(blkno),

pg_visibility_map('tfreeze',g.blkno)

ORDER BY g.blkno;

blkno | all_visible | all_frozen

−−−−−−−+−−−−−−−−−−−−−+−−−−−−−−−−−−

0 | t | f

1 | t | t

(2 rows)

Age for Forced Autovacuum

Sometimes it is not enough to configure the two parameters discussed above to

timely freeze tuples. Autovacuum might be switched off, while regular ������ is

not being called at all (it is a very bad idea, but technically it is possible). Besides,

153

Chapter 7 Freezing

some inactive databases (like template0) may not be vacuumedp. ��� . Postgre��� can

handle such situations by forcing autovacuum in the aggressive mode.

Autovacuum is forced1 (even if it is switched off) when there is a risk that the

age of some unfrozen transaction ��s in the database will exceed the200

million

autovacu-

um_freeze_max_age value. The decision is taken based on the age of the oldest

pg_class.relfrozenxid transaction in all the tables, as all the older transactions are

guaranteed to be frozen. The �� of this transaction is stored in the system catalog:

=> SELECT datname, datfrozenxid, age(datfrozenxid) FROM pg_database;

datname | datfrozenxid | age

−−−−−−−−−−−+−−−−−−−−−−−−−−+−−−−−

postgres | 726 | 132

template1 | 726 | 132

template0 | 726 | 132

internals | 726 | 132

(4 rows)

xid

datfrozenxid

relfrozenxid

of table 1

relfrozenxid

of table 3

relfrozenxid

of table 2

all row versions
in the database are

guaranteed to be frozen

The autovacuum_freeze_max_age limit is set to � billion transactions (a bit less than

half of the circle), while the default value is �� times smaller. It is done for good

reason: a big value increases the risk of transaction �� wraparound, as Postgre���

may fail to timely freeze all the required tuples. In this case, the server must stop

immediately to prevent possible issues and will have to be restarted by an admin-

istrator.

1 backend/access/transam/varsup.c, SetTransactionIdLimit function

154

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/transam/varsup.c;hb=REL_14_STABLE

7.4 Manual Freezing

The autovacuum_freeze_max_age value also affects the size of ����. p. ��There is no

need to keep the status of frozen transactions, and all the transactions that precede

the onewith the oldest datfrozenxid in the cluster are sure to be frozen. Those ����

files that are not required anymore are removed by autovacuum.1

Changing the autovacuum_freeze_max_age parameter requires a server restart.

However, all the freezing settings discussed above can also be adjusted at the table

level via the corresponding storage parameters. Note that the names of all these

parameters start with “auto”:

• autovacuum_freeze_min_age and toast.autovacuum_freeze_min_age

• autovacuum_freeze_table_age and toast.autovacuum_freeze_table_age

• autovacuum_freeze_max_age and toast.autovacuum_freeze_max_age

Age for Failsafe Freezing v. ��

If autovacuum is already struggling to prevent transaction �� wraparound and it is

clearly a race against time, a safety switch is pulled: autovacuum will ignore the

autovacuum_vacuum_cost_delay (vacuum_cost_delay) value andwill stop vacuuming

indexes to freeze heap tuples as soon as possible.

A failsafe freezing mode2 is enabled if there is a risk that the age of an unfrozen

transaction in the databasewill exceed the 1.6 billionvacuum_failsafe_age value. It is assumed

that this value must be higher than autovacuum_freeze_max_age.

7.4 Manual Freezing

It is sometimes more convenient to manage freezing manually rather than rely on

autovacuum.

1 backend/commands/vacuum.c, vac_truncate_clog function
2 backend/access/heap/vacuumlazy.c, lazy_check_wraparound_failsafe function

155

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/commands/vacuum.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/heap/vacuumlazy.c;hb=REL_14_STABLE

Chapter 7 Freezing

Freezing by Vacuum

You can initiate freezing by calling the ������ command with the ������ op-

tion. It will freeze all the heap tuples regardless of their transaction age, as if

vacuum_freeze_min_age = 0.

If the purposev. �� of such a call is to freeze heap tuples as soon as possible, it makes

sense to disable index vacuuming, like it is done in the failsafe mode. You can do it

either explicitly, by running the ������ (freeze, index_cleanup false) command, or

via the vacuum_index_cleanup storage parameter. It is rather obvious that it should

not be done on a regular basis since in this case ������will not be coping well with

its main task of page cleanup.

Freezing Data at the Initial Loading

The data that is not expected to change can be frozen at once, while it is being

loaded into the database. It is done by running the ���� command with the ������

option.

Tuples can be frozen during the initial loading only if the resulting table has been

created or truncated within the same transaction, as both these operations acquire

an exclusive lockp. ��� on the table. This restriction is necessary because frozen tuples

are expected to be visible in all snapshots, regardless of the isolation level; other-

wise, transactions would suddenly see freshly-frozen tuples right as they are being

uploaded. But if the lock is acquired, other transactions will not be able to get

access to this table.

Nevertheless, it is still technically possible to break isolation. Let’s start a new

transaction at the Repeatable Read isolation level in a separate session:

=> BEGIN ISOLATION LEVEL REPEATABLE READ;

=> SELECT 1; -- the snapshot is built

Truncate the tfreeze table and insert new rows into this table within the same trans-

action. (If the read-only transaction had already accessed the tfreeze table, the

�������� command will be blocked.)

156

7.4 Manual Freezing

=> BEGIN;

=> TRUNCATE tfreeze;

=> COPY tfreeze FROM stdin WITH FREEZE;

1 FOO

2 BAR

3 BAZ

\.

=> COMMIT;

Now the reading transaction sees the new data as well:

=> SELECT count(*) FROM tfreeze;

count

−−−−−−−

3

(1 row)

=> COMMIT;

It does break isolation, but since data loading is unlikely to happen regularly, in

most cases it will not cause any issues.

If you load data with freezing v. ��, the visibility map is created at once, and page head-

ers receive the visibility attribute: p. ���

=> SELECT * FROM pg_visibility_map('tfreeze',0);

all_visible | all_frozen

−−−−−−−−−−−−−+−−−−−−−−−−−−

t | t

(1 row)

=> SELECT flags & 4 > 0 AS all_visible

FROM page_header(get_raw_page('tfreeze',0));

all_visible

−−−−−−−−−−−−−

t

(1 row)

Thus, v. ��if the data has been loaded with freezing, the table will not be processed by

vacuum (as long as the data remains unchanged). Unfortunately, this functionality

is not supported for ����� tables yet: if an oversized value is loaded, vacuum will

have to rewrite the whole ����� table to set visibility attributes in all page headers.

157

8
Rebuilding Tables and Indexes

8.1 Full Vacuuming

Why is Routine Vacuuming not Enough?

Routine vacuuming can free more space than page pruning, but sometimes it may

still be not enough.

If table or index files have grown in size, ������ can clean up some space within

pages, but it can rarely reduce the number of pages. The reclaimed space can only

be returned to the operating system if several empty pages appear at the very end

of the file, which does not happen too often.

An excessive size can lead to unpleasant consequences:

• Full table (or index) scan will take longer.

• A bigger buffer cache may be required (pages are cached as a whole, so data

density decreases).

• B-trees can get an extra level, which slows down index access.

• Files take up extra space on disk and in backups.

If the fraction of useful data in a file has dropped below some reasonable level, an

administrator can perform full vacuuming by running the ������ ���� command.1

In this case, the table and all its indexes are rebuilt from scratch, and the data is

packed as densely as possible (taking the fillfactorp. ��� parameter into account).

1 postgresql.org/docs/14/routine-vacuuming.html#VACUUM-FOR-SPACE-RECOVERY

158

https://postgresql.org/docs/14/routine-vacuuming.html#VACUUM-FOR-SPACE-RECOVERY

8.1 Full Vacuuming

When full vacuuming is performed, Postgre��� first fully rebuilds the table and

then each of its indexes. While an object is being rebuilt, both old and new files

have to be stored on disk,1 so this process may require a lot of free space.

You should also keep in mind that this operation fully blocks access to the table,

both for reads and writes.

Estimating Data Density

For the purpose of illustration, let’s insert some rows into the table:

=> TRUNCATE vac;

=> INSERT INTO vac(id,s)

SELECT id, id::text FROM generate_series(1,500000) id;

Storage density can be estimated using the pgstattuple extension:

=> CREATE EXTENSION pgstattuple;

=> SELECT * FROM pgstattuple('vac') \gx

−[RECORD 1]−−−−−−+−−−−−−−−−

table_len | 70623232

tuple_count | 500000

tuple_len | 64500000

tuple_percent | 91.33

dead_tuple_count | 0

dead_tuple_len | 0

dead_tuple_percent | 0

free_space | 381844

free_percent | 0.54

The function reads the whole table and displays statistics on space distribution in

its files. The tuple_percent field shows the percentage of space taken up by use-

ful data (heap tuples). This value is inevitably less than ���% because of various

metadata within pages, but in this example it is still quite high.

For indexes, the displayed information differs a bit, but the avg_leaf_density field

has the samemeaning: it shows the percentage of useful data (in �-tree leaf pages).

1 backend/commands/cluster.c

159

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/commands/cluster.c;hb=REL_14_STABLE

Chapter 8 Rebuilding Tables and Indexes

=> SELECT * FROM pgstatindex('vac_s') \gx

−[RECORD 1]−−−−−−+−−−−−−−−−−

version | 4

tree_level | 3

index_size | 114302976

root_block_no | 2825

internal_pages | 376

leaf_pages | 13576

empty_pages | 0

deleted_pages | 0

avg_leaf_density | 53.88

leaf_fragmentation | 10.59

The previously used pgstattuple functions read the table or index in full to get the

precise statistics. For large objects, it can turn out to be too expensive, so the

extension also provides another function called pgstattuple_approx, which skips

the pages tracked in the visibility map to show approximate figures.

A faster but even less accurate method is to roughly estimate the ratio between the

data volume and the file size using the system catalog.1

Here are the current sizes of the table and its index:

=> SELECT pg_size_pretty(pg_table_size('vac')) AS table_size,

pg_size_pretty(pg_indexes_size('vac')) AS index_size;

table_size | index_size

−−−−−−−−−−−−+−−−−−−−−−−−−

67 MB | 109 MB

(1 row)

Now let’s delete ��% of all the rows:

=> DELETE FROM vac WHERE id % 10 != 0;

DELETE 450000

Routine vacuuming does not affect the file size because there are no empty pages

at the end of the file:

=> VACUUM vac;

1 wiki.postgresql.org/wiki/Show_database_bloat

160

https://wiki.postgresql.org/wiki/Show_database_bloat

8.1 Full Vacuuming

=> SELECT pg_size_pretty(pg_table_size('vac')) AS table_size,

pg_size_pretty(pg_indexes_size('vac')) AS index_size;

table_size | index_size

−−−−−−−−−−−−+−−−−−−−−−−−−

67 MB | 109 MB

(1 row)

However, data density has dropped about �� times:

=> SELECT vac.tuple_percent, vac_s.avg_leaf_density

FROM pgstattuple('vac') vac, pgstatindex('vac_s') vac_s;

tuple_percent | avg_leaf_density

−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−

9.13 | 6.71

(1 row)

The table and the index are currently located in the following files:

=> SELECT pg_relation_filepath('vac') AS vac_filepath,

pg_relation_filepath('vac_s') AS vac_s_filepath \gx

−[RECORD 1]−−+−−−−−−−−−−−−−−−−−

vac_filepath | base/16391/16514

vac_s_filepath | base/16391/16515

Let’s check what we will get after ������ ����. While the command is running, v. ��its

progress can be tracked in the pg_stat_progress_cluster view (which is similar to the

pg_stat_progress_vacuum view provided for ������):

=> VACUUM FULL vac;

=> SELECT * FROM pg_stat_progress_cluster \gx

−[RECORD 1]−−−−−−−+−−−−−−−−−−−−−−−−−

pid | 19488

datid | 16391

datname | internals

relid | 16479

command | VACUUM FULL

phase | rebuilding index

cluster_index_relid | 0

heap_tuples_scanned | 50000

heap_tuples_written | 50000

heap_blks_total | 8621

heap_blks_scanned | 8621

index_rebuild_count | 0

161

Chapter 8 Rebuilding Tables and Indexes

Expectedly, ������ ���� phases1 differ from those of routine vacuuming.

Full vacuuming has replaced old files with new ones:

=> SELECT pg_relation_filepath('vac') AS vac_filepath,

pg_relation_filepath('vac_s') AS vac_s_filepath \gx

−[RECORD 1]−−+−−−−−−−−−−−−−−−−−

vac_filepath | base/16391/16526

vac_s_filepath | base/16391/16529

Both index and table sizes are much smaller now:

=> SELECT pg_size_pretty(pg_table_size('vac')) AS table_size,

pg_size_pretty(pg_indexes_size('vac')) AS index_size;

table_size | index_size

−−−−−−−−−−−−+−−−−−−−−−−−−

6904 kB | 6504 kB

(1 row)

As a result, data density has increased. For the index, it is even higher than the

original one: it is more efficient to create a �-tree from scratch based on the avail-

able data than to insert entries row by row into an already existing index:

=> SELECT vac.tuple_percent,

vac_s.avg_leaf_density

FROM pgstattuple('vac') vac,

pgstatindex('vac_s') vac_s;

tuple_percent | avg_leaf_density

−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−

91.23 | 91.08

(1 row)

Freezing

When the table is being rebuilt, Postgre��� freezes its tuples because this opera-

tion costs almost nothing compared to the rest of the work:

1 postgresql.org/docs/14/progress-reporting.html#CLUSTER-PHASES

162

https://postgresql.org/docs/14/progress-reporting.html#CLUSTER-PHASES

8.1 Full Vacuuming

=> SELECT * FROM heap_page('vac',0,0) LIMIT 5;

ctid | state | xmin | xmin_age | xmax

−−−−−−−+−−−−−−−−+−−−−−−−+−−−−−−−−−−+−−−−−−

(0,1) | normal | 861 f | 5 | 0 a

(0,2) | normal | 861 f | 5 | 0 a

(0,3) | normal | 861 f | 5 | 0 a

(0,4) | normal | 861 f | 5 | 0 a

(0,5) | normal | 861 f | 5 | 0 a

(5 rows)

But pages are registered neither in the visibilitymap nor in the freezemap, and the

page header does not receive the visibility attribute (as it happens when the ����

command is executed with the ������ option p. ���):

=> SELECT * FROM pg_visibility_map('vac',0);

all_visible | all_frozen

−−−−−−−−−−−−−+−−−−−−−−−−−−

f | f

(1 row)

=> SELECT flags & 4 > 0 all_visible

FROM page_header(get_raw_page('vac',0));

all_visible

−−−−−−−−−−−−−

f

(1 row)

The situation improves only after ������ is called (or autovacuum is triggered):

=> VACUUM vac;

=> SELECT * FROM pg_visibility_map('vac',0);

all_visible | all_frozen

−−−−−−−−−−−−−+−−−−−−−−−−−−

t | t

(1 row)

=> SELECT flags & 4 > 0 AS all_visible

FROM page_header(get_raw_page('vac',0));

all_visible

−−−−−−−−−−−−−

t

(1 row)

163

Chapter 8 Rebuilding Tables and Indexes

It essentially means that even if all tuples in a page are beyond the database hori-

zon, such a page will still have to be rewritten.

8.2 Other Rebuilding Methods

Alternatives to Full Vacuuming

In addition to ������ ����, there are several other commands that can fully rebuild

tables and indexes. All of themexclusively lock the table, all of themdelete old data

files and recreate them anew.

The �������p. ��� command is fully analogous to ������ ����, but it also reorders tuples

in files based on one of the available indexes. In some cases, it can help the planner

use index scans more efficientlyp. ��� . But you should bear in mind that clusterization

is not supported: all further table updates will be breaking the physical order of

tuples.

Programmatically, ������ ���� is simply a special instance of the ������� com-

mand that does not require tuple reordering.1

The ������� command rebuilds one or more indexes.2 In fact, ������ ���� and

������� use this command under the hood when rebuilding indexes.

The �������� command3 deletes all table rows; it is a logical equivalent of ������

runwithout the����� clause. Butwhile������p. �� simplymarks heap tuples as deleted

(so they still have to be vacuumed), �������� creates a new empty file, which is

usually faster.

Reducing Downtime During Rebuilding

������ ���� is not meant to be run regularly, as it exclusively locksp. ��� the table (even

for queries) for the whole duration of its operation. This is usually not an option

for highly available systems.

1 backend/commands/cluster.c
2 backend/commands/indexcmds.c
3 backend/commands/tablecmds.c, ExecuteTruncate function

164

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/commands/cluster.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/commands/indexcmds.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/commands/tablecmds.c;hb=REL_14_STABLE

8.3 Precautions

There are several extensions (such as pg_repack1) that can rebuild tables and in-

dexes with almost zero downtime. An exclusive lock is still required, but only at the

beginning and at the end of this process, and only for a short time. It is achieved

by a more complex implementation: all the changes made on the original table

while it is being rebuilt are saved by a trigger and then applied to the new table. To

complete the operation, the utility replaces one table with the other in the system

catalog.

An unconventional solution is offered by the pgcompacttable utility.2 It performs

multiple fake row updates (that do not change any data) so that current row ver-

sions gradually move towards the start of the file.

Between these update series, vacuuming removes outdated tuples and truncates p. ���

the file little by little. This approach takes much more time and resources, but it

requires no extra space for rebuilding the table and does not lead to load spikes.

Short-time exclusive locks are still acquired while the table is being truncated, but

vacuuming handles them rather smoothly.

8.3 Precautions

Read-Only Queries

One of the reasons for file bloating is executing long-running transactions that

hold the database horizon p. ���alongside intensive data updates.

As such, long-running (read-only) transactions do not cause any issues. So a com-

mon approach is to split the load between different systems: keep fast ���� queries

on the primary server and direct all ���� transactions to a replica. Although it

makes the solution more expensive and complicated, such measures may turn out

to be indispensable.

In some cases, long transactions are the result of application or driver bugs rather

than a necessity. If an issue cannot be resolved in a civilized way, the administrator

can resort to the following two parameters:

1 github.com/reorg/pg_repack
2 github.com/dataegret/pgcompacttable

165

https://github.com/reorg/pg_repack
https://github.com/dataegret/pgcompacttable

Chapter 8 Rebuilding Tables and Indexes

• The old_snapshot_thresholdv. �.� parameter defines the maximum lifetime of a

snapshot. Once this time is up, the server has the right to remove outdated

tuples; if a long-running transaction still requires them, it will get an error

(“snapshot too old”).

• The idle_in_transaction_session_timeoutv. �.� parameter limits the lifetime of an idle

transaction. The transaction is aborted upon reaching this threshold.

Data Updates

Another reason for bloating is simultaneous modification of a large number of tu-

ples. If all table rows get updated, the number of tuples can double, and vacuuming

will not have enough time to interfere. Page pruning can reduce this problem, but

not resolve it entirely.

Let’s extend the output with another column to keep track of the processed rows:

=> ALTER TABLE vac ADD processed boolean DEFAULT false;

=> SELECT pg_size_pretty(pg_table_size('vac'));

pg_size_pretty

−−−−−−−−−−−−−−−−

6936 kB

(1 row)

Once all the rows are updated, the table gets almost two times bigger:

=> UPDATE vac SET processed = true;

UPDATE 50000

=> SELECT pg_size_pretty(pg_table_size('vac'));

pg_size_pretty

−−−−−−−−−−−−−−−−

14 MB

(1 row)

To address this situation, you can reduce the number of changes performed by a

single transaction, spreading them out over time; then vacuuming can delete out-

dated tuples and free some space for new ones within the already existing pages.

Assuming that each row update can be committed separately, we can use the fol-

lowing query that selects a batch of rows of the specified size as a template:

166

8.3 Precautions

SELECT ID

FROM table

WHERE filtering the already processed rows

LIMIT batch size

FOR UPDATE SKIP LOCKED

This code snippet selects and immediately locks a set of rows that does not ex-

ceed the specified size. The rows that are already locked by other transactions are

skipped p. ���: they will get into another batch next time. It is a rather flexible and con-

venient solution that allows you to easily change the batch size and restart the

operation in case of a failure. Let’s unset the processed attribute and perform full

vacuuming to restore the original size of the table:

=> UPDATE vac SET processed = false;

=> VACUUM FULL vac;

Once the first batch is updated, the table size grows a bit:

=> WITH batch AS (

SELECT id FROM vac WHERE NOT processed LIMIT 1000

FOR UPDATE SKIP LOCKED

)

UPDATE vac SET processed = true

WHERE id IN (SELECT id FROM batch);

UPDATE 1000

=> SELECT pg_size_pretty(pg_table_size('vac'));

pg_size_pretty

−−−−−−−−−−−−−−−−

7064 kB

(1 row)

But from now on, the size remains almost the same because new tuples replace the

removed ones:

=> VACUUM vac;

=> WITH batch AS (

SELECT id FROM vac WHERE NOT processed LIMIT 1000

FOR UPDATE SKIP LOCKED

)

UPDATE vac SET processed = true

WHERE id IN (SELECT id FROM batch);

UPDATE 1000

167

Chapter 8 Rebuilding Tables and Indexes

=> SELECT pg_size_pretty(pg_table_size('vac'));

pg_size_pretty

−−−−−−−−−−−−−−−−

7072 kB

(1 row)

168

Part II

Buffer Cache
and WAL

9
Buffer Cache

9.1 Caching

In modern computing systems, caching is omnipresent—both at the hardware and

at the software level. The processor alone can have up to three or four levels of

cache. R��� controllers and disks add their own cache too.

Caching is used to even out performance difference between fast and slow types of

memory. Fast memory is expensive and has smaller volume, while slow memory

is bigger and cheaper. Therefore, fast memory cannot accommodate all the data

stored in slow memory. But in most cases only a small portion of data is being

actively used at each particular moment, so allocating some fast memory for cache

to keep hot data can significantly reduce the overhead incurred by slow memory

access.

In Postgre���, buffer cache1 holds relation pages, thus balancing access times to

disks (milliseconds) and ��� (nanoseconds).

The operating system has its own cache that serves the same purpose. For this

reason, database systems are usually designed to avoid double caching: the data

stored on disk is usually queried directly, bypassing the �� cache. But Postgre���

uses a different approach: it reads and writes all data via buffered file operations.

Double caching can be avoided if you apply direct �/�. It will reduce the overhead, as

Postgre��� will use direct memory access (���) instead of copying buffered pages into

the �� address space; besides, you will gain immediate control over physical writes on

disk. However, direct �/� does not support data prefetching enabled by bufferization, so

you have to implement it separately via asynchronous �/� p. ���, which requires massive code

1 backend/storage/buffer/README

171

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/storage/buffer/README;hb=REL_14_STABLE

Chapter 9 Buffer Cache

modifications in Postgre��� core, as well as handling �� incompatibilities when it comes

to direct and asynchronous �/� support. But once the asynchronous communication is set

up, you can enjoy additional benefits of no-wait disk access.

The Postgre��� community has already started this major effort,1 but it will take a long

time for the actual results to appear.

9.2 Buffer Cache Design

Buffer cache is located in the server’s shared memory and is accessible to all the

processes. It takes the major part of the shared memory and is surely one of the

most important and complex data structures in Postgre���. Understanding how

cache works is important in its own right, but even more so as many other struc-

tures (such as subtransactions, ���� transaction status, and ��� entries) use a

similar caching mechanism, albeit a simpler one.

The name of this cache is inspired by its inner structure, as it consists of an array of

buffers. Each buffer reserves a memory chuck that can accommodate a single data

page together with its header.2

header

page

buffer cache

A header contains some information about the buffer and the page in it, such as:

• physical location of the page (file ��, fork, and block number in the fork)

• the attribute showing that the data in the page has been modified and sooner

or later has to be written back to disk (such a page is called dirty)

• buffer usage count

• pin count (or reference count)

1 www.postgresql.org/message-id/flat/20210223100344.llw5an2aklengrmn%40alap3.anarazel.de
2 include/storage/buf_internals.h

172

https://www.postgresql.org/message-id/flat/20210223100344.llw5an2aklengrmn%40alap3.anarazel.de
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/include/storage/buf_internals.h;hb=REL_14_STABLE

9.2 Buffer Cache Design

To get access to a relation’s data page, a process requests it from the buffer man-

ager1 and receives the �� of the buffer that contains this page. Then it reads the

cached data and modifies it right in the cache if needed. While the page is in use,

its buffer is pinned. Pins forbid eviction of the cached page and can be applied

together with other locks p. ���. Each pin increments the usage count as well.

As long as the page is cached, its usage does not incur any file operations.

We can explore the buffer cache using the pg_buffercache extension:

=> CREATE EXTENSION pg_buffercache;

Let’s create a table and insert a row:

=> CREATE TABLE cacheme(

id integer

) WITH (autovacuum_enabled = off);

=> INSERT INTO cacheme VALUES (1);

Now the buffer cache contains a heap page with the newly inserted row. You can

see it for yourself by selecting all the buffers related to a particular table. We will

need such a query again, so let’s wrap it into a function:

=> CREATE FUNCTION buffercache(rel regclass)

RETURNS TABLE(

bufferid integer, relfork text, relblk bigint,

isdirty boolean, usagecount smallint, pins integer

) AS $$

SELECT bufferid,

CASE relforknumber

WHEN 0 THEN 'main'

WHEN 1 THEN 'fsm'

WHEN 2 THEN 'vm'

END,

relblocknumber,

isdirty,

usagecount,

pinning_backends

FROM pg_buffercache

WHERE relfilenode = pg_relation_filenode(rel)

ORDER BY relforknumber, relblocknumber;

$$ LANGUAGE sql;

1 backend/storage/buffer/bufmgr.c

173

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/storage/buffer/bufmgr.c;hb=REL_14_STABLE

Chapter 9 Buffer Cache

=> SELECT * FROM buffercache('cacheme');

bufferid | relfork | relblk | isdirty | usagecount | pins

−−−−−−−−−−+−−−−−−−−−+−−−−−−−−+−−−−−−−−−+−−−−−−−−−−−−+−−−−−−

268 | main | 0 | t | 1 | 0

(1 row)

The page is dirty: it has been modified, but is not written to disk yet. Its usage

count is set to one.

9.3 Cache Hits

When the buffer manager has to read a page,1 it first checks the buffer cache.

All buffer ��s are stored in a hash table,2 which is used to speed up their search.

Many modern programming languages include hash tables as one of the basic data types.

Hash tables are often called associative arrays, and indeed, from the user’s perspective

they do look like an array; however, their index (a hash key) can be of any data type, for

example, a text string rather than an integer.

While the range of possible key values can be quite large, hash tables never contain that

many different values at a time. The idea of hashing is to convert a key value into an

integer number using a hash function. This number (or some of its bits) is used as an index

of a regular array. The elements of this array are called hash table buckets.

A good hash function distributes hash keys between buckets more or less uniformly, but it

can still assign the same number to different keys, thus placing them into the same bucket;

it is called a collision. For this reason, values are stored in buckets together with hash keys;

to access a hashed value by its key, Postgre��� has to check all the keys in the bucket.

There are multiple implementations of hash tables; of all the possible options, the

buffer cache uses the extendible table that resolves hash collisions by chaining.3

A hash key consists of the �� of the relation file, the type of the fork, and the ��

of the page within this fork’s file. Thus, knowing the page, Postgre��� can quickly

find the buffer containing this page or make sure that the page is not currently

cached.

1 backend/storage/buffer/bufmgr.c, ReadBuffer_common function
2 backend/storage/buffer/buf_table.c
3 backend/utils/hash/dynahash.c

174

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/storage/buffer/bufmgr.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/storage/buffer/buf_table.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/utils/hash/dynahash.c;hb=REL_14_STABLE

9.3 Cache Hits

3501, 0, 3

2610, 0, 7

hash table

The buffer cache implementation has long been criticized for relying on a hash table: this

structure is of no use when it comes to finding all the buffers taken by pages of a particular

relation, which is required to remove pages from cache when running ���� and ��������

commands or truncating a table during vacuuming.1 Yet no one has suggested an adequate

alternative so far.

If the hash table contains the required buffer ��, the buffermanager pins this buffer

and returns its �� to the process. Then this process can start using the cached page

without incurring any �/� traffic.

To pin a buffer, Postgre��� has to increment the pin counter in its header; a buffer

can be pinned by several processes at a time. While its pin counter is greater than

zero, the buffer is assumed to be in use, and no radical changes in its contents are

allowed. For example, a new tuple can appear (it will be invisible following the

visibility rules), but the page itself cannot be replaced.

When run with the analyze and buffers options, the ������� command executes the

displayed query plan and shows the number of used buffers:

1 backend/storage/buffer/bufmgr.c, DropRelFileNodeBuffers function

175

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/storage/buffer/bufmgr.c;hb=REL_14_STABLE

Chapter 9 Buffer Cache

=> EXPLAIN (analyze, buffers, costs off, timing off, summary off)

SELECT * FROM cacheme;

QUERY PLAN

−−−

Seq Scan on cacheme (actual rows=1 loops=1)

Buffers: shared hit=1

Planning:

Buffers: shared hit=12 read=7

(4 rows)

Here hit=1means that the only page that had to be read was found in the cache.

Buffer pinning increases the usage count by one:

=> SELECT * FROM buffercache('cacheme');

bufferid | relfork | relblk | isdirty | usagecount | pins

−−−−−−−−−−+−−−−−−−−−+−−−−−−−−+−−−−−−−−−+−−−−−−−−−−−−+−−−−−−

268 | main | 0 | t | 2 | 0

(1 row)

To observe pinning in action during query execution, let’s open a cursor—it will

hold the buffer pin, as it has to provide quick access to the next row in the result

set:

=> BEGIN;

=> DECLARE c CURSOR FOR SELECT * FROM cacheme;

=> FETCH c;

id

−−−−

1

(1 row)

=> SELECT * FROM buffercache('cacheme');

bufferid | relfork | relblk | isdirty | usagecount | pins

−−−−−−−−−−+−−−−−−−−−+−−−−−−−−+−−−−−−−−−+−−−−−−−−−−−−+−−−−−−

268 | main | 0 | t | 3 | 1

(1 row)

If a process cannot use a pinned buffer, it usually skips it and simply chooses an-

other one. We can see it during table vacuuming:

176

9.3 Cache Hits

=> VACUUM VERBOSE cacheme;

INFO: vacuuming "public.cacheme"

INFO: table "cacheme": found 0 removable, 0 nonremovable row

versions in 1 out of 1 pages

DETAIL: 0 dead row versions cannot be removed yet, oldest xmin:

877

Skipped 1 page due to buffer pins, 0 frozen pages.

CPU: user: 0.00 s, system: 0.00 s, elapsed: 0.00 s.

VACUUM

The page was skipped because its tuples could not be physically removed from the

pinned buffer.

But if it is exactly this buffer that is required, the process joins the queue and waits

for exclusive access to this buffer. An example of such an operation is vacuuming

with freezing.1 p. ���

Once the cursor closes or moves on to another page, the buffer gets unpinned. In

this example, it happens at the end of the transaction:

=> COMMIT;

=> SELECT * FROM buffercache('cacheme');

bufferid | relfork | relblk | isdirty | usagecount | pins

−−−−−−−−−−+−−−−−−−−−+−−−−−−−−+−−−−−−−−−+−−−−−−−−−−−−+−−−−−−

268 | main | 0 | t | 3 | 0

310 | vm | 0 | f | 2 | 0

(2 rows)

Page modifications are protected by the same pinning mechanism. For example,

let’s insert another row into the table (it will get into the same page):

=> INSERT INTO cacheme VALUES (2);

=> SELECT * FROM buffercache('cacheme');

bufferid | relfork | relblk | isdirty | usagecount | pins

−−−−−−−−−−+−−−−−−−−−+−−−−−−−−+−−−−−−−−−+−−−−−−−−−−−−+−−−−−−

268 | main | 0 | t | 4 | 0

310 | vm | 0 | f | 2 | 0

(2 rows)

1 backend/storage/buffer/bufmgr.c, LockBufferForCleanup function

177

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/storage/buffer/bufmgr.c;hb=REL_14_STABLE

Chapter 9 Buffer Cache

Postgre��� does not perform any immediate writes to disk: a page remains dirty

in the buffer cache for a while, providing some performance gains for both reads

and writes.

9.4 Cache Misses

If the hash table has no entry related to the queried page, it means that this page

is not cached. In this case, a new buffer is assigned (and immediately pinned), the

page is read into this buffer, and the hash table references aremodified accordingly.

Let’s restart the instance to clear its buffer cache:

postgres$ pg_ctl restart -l /home/postgres/logfile

An attempt to read a page will result in a cache miss, and the page will be loaded

into a new buffer:

=> EXPLAIN (analyze, buffers, costs off, timing off, summary off)

SELECT * FROM cacheme;

QUERY PLAN

−−−

Seq Scan on cacheme (actual rows=2 loops=1)

Buffers: shared read=1 dirtied=1

Planning:

Buffers: shared hit=15 read=7

(4 rows)

Instead of hit, the plan now shows the read status, which denotes a cache miss.

Besides, this page has become dirty, as the query has modified some hint bitsp. �� .

A buffer cache query shows that the usage count for the newly added page is set to

one:

=> SELECT * FROM buffercache('cacheme');

bufferid | relfork | relblk | isdirty | usagecount | pins

−−−−−−−−−−+−−−−−−−−−+−−−−−−−−+−−−−−−−−−+−−−−−−−−−−−−+−−−−−−

98 | main | 0 | t | 1 | 0

(1 row)

178

9.4 Cache Misses

The pg_statio_all_tables view contains the complete statistics on buffer cache usage

by tables:

=> SELECT heap_blks_read, heap_blks_hit

FROM pg_statio_all_tables

WHERE relname = 'cacheme';

heap_blks_read | heap_blks_hit

−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−

2 | 5

(1 row)

Postgre��� provides similar views for indexes and sequences. They can also display

statistics on �/� operations, but only if offtrack_io_timing is enabled.

Buffer Search and Eviction

Choosing a buffer for a page is not so trivial.1 There are two possible scenarios:

1. Right after the server start all the buffers are empty and are bound into a list.

While some buffers are still free, the next page read from disk will occupy the

first buffer, and it will be removed from the list.

A buffer can return to the list2 only if its page disappears, without being re-

placed by another page. It can happen if you call ���� or �������� commands,

or if the table is truncated during vacuuming.

2. Sooner or later no free buffers will be left (since the size of the database is

usually bigger than the memory chunk allocated for cache). Then the buffer

manager will have to select one of the buffers that is already in use and evict

the cached page from this buffer. It is performed using the clock sweep algo-

rithm, which is well illustrated by the clock metaphor. Pointing to one of the

buffers, the clock hand starts going around the buffer cache and reduces the

usage count for each cached page by one as it passes. The first unpinned buffer

with the zero count found by the clock hand will be cleared.

1 backend/storage/buffer/freelist.c, StrategyGetBuffer function
2 backend/storage/buffer/freelist.c, StrategyFreeBuffer function

179

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/storage/buffer/freelist.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/storage/buffer/freelist.c;hb=REL_14_STABLE

Chapter 9 Buffer Cache

Thus, the usage count is incremented each time the buffer is accessed (that is,

pinned), and reduced when the buffer manager is searching for pages to evict.

As a result, the least recently used pages are evicted first,while those that have

been accessed more often will remain in the cache longer.

As you can guess, if all the buffers have a non-zero usage count, the clock hand

has to complete more than one full circle before any of them finally reaches

the zero value. To avoid running multiple laps, Postgre��� limits the usage

count by �.

Once the buffer to evict is found, the reference to the page that is still in this

buffer must be removed from the hash table.

But if this buffer is dirty,p. ��� that is, it contains some modified data, the old page

cannot be simply thrown away—the buffer manager has to write it to disk first.

free buffers

clock hand

Then the buffer manager reads a new page into the found buffer—no matter if it

had to be cleared or was still free. It uses buffered �/� for this purpose, so the page

will be read from disk only if the operating system cannot find it in its own cache.

180

9.5 Bulk Eviction

Those database systems that use direct �/� and do not depend on the �� cache differentiate

between logical reads (from ���, that is, from the buffer cache) and physical reads (from

disk). From the standpoint of Postgre���, a page can be either read from the buffer cache

or requested from the operating system, but there is no way to tell whether it was found

in ��� or read from disk in the latter case.

The hash table is updated to refer to the new page, and the buffer gets pinned. Its

usage count is incremented and is now set to one, which gives this buffer some

time to increase this value while the clock hand is traversing the buffer cache.

9.5 Bulk Eviction

If bulk reads or writes are performed, there is a risk that one-time data can quickly

oust useful pages from the buffer cache.

As a precaution, bulk operations use rather small buffer rings, and eviction is per-

formed within their boundaries, without affecting other buffers.

Alongside the “buffer ring,” the code also uses the term“ring buffer”. However, this synonym

is rather ambiguous because the ring buffer itself consists of several buffers (that belong

to the buffer cache). The term “buffer ring” is more accurate in this respect.

A buffer ring of a particular size consists of an array of buffers that are used one

after another. At first, the buffer ring is empty, and individual buffers join it one by

one, after being selected from the buffer cache in the usual manner. Then eviction

comes into play, but only within the ring limits.1

Buffers added into a ring are not excluded from the buffer cache and can still be

used by other operations. So if the buffer to be reused turns out to be pinned, or

its usage count is higher than one, it will be simply detached from the ring and

replaced by another buffer.

Postgre��� supports three eviction strategies.

Bulk reads strategy is used for sequential scans p. ���of large tables if their size exceeds
1

4
of the buffer cache. The ring buffer takes ��� k� (�� standard pages).

1 backend/storage/buffer/freelist.c, GetBufferFromRing function

181

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/storage/buffer/freelist.c;hb=REL_14_STABLE

Chapter 9 Buffer Cache

This strategy does not allowwriting dirty pages to disk to free a buffer; instead,

the buffer is excluded from the ring and replaced by another one. As a result,

reading does not have to wait for writing to complete, so it is performed faster.

If it turns out that the table is already being scanned, the process that starts

another scan joins the existing buffer ring and gets access to the currently

available data, without incurring extra �/� operations.1 When the first process

completes the scan, the second one gets back to the skipped part of the table.

Bulk writes strategy is applied by ���� ����, ������ ����� �� ������, and ������ ��-

���������� ���� commands, as well as by those ����� ����� flavors that cause

table rewrites. The allocated ring is quite big, its default size being �� ��

(���� standard pages), but it never exceeds 1

8
of the total size of the buffer

cache.

Vacuuming strategy is used by the process of vacuuming when it performs a full

table scan without taking the visibility map into account. The ring buffer is

assigned ��� k� of ��� (�� standard pages).

Buffer rings do not always prevent undesired eviction. If ������ or ������ com-

mands affect a lot of rows, the performed table scan applies the bulk reads strategy,

but since the pages are constantly being modified, buffer rings virtually become

useless.

Another example worth mentioning is storing oversized data in �����p. �� tables. In

spite of a potentially large volume of data that has to be read, toasted values are

always accessed via an index, so they bypass buffer rings.

Let’s take a closer look at the bulk reads strategy. For simplicity, we will create a

table in such away that an inserted row takes thewhole page. By default, the buffer

cache size is ��,��� pages, � k� each. So the table must take more than ���� pages

for the scan to use a buffer ring.

=> CREATE TABLE big(

id integer PRIMARY KEY GENERATED ALWAYS AS IDENTITY,

s char(1000)

) WITH (fillfactor = 10);

1 backend/access/common/syncscan.c

182

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/common/syncscan.c;hb=REL_14_STABLE

9.5 Bulk Eviction

=> INSERT INTO big(s)

SELECT 'FOO' FROM generate_series(1,4096+1);

Let’s analyze the table:

=> ANALYZE big;

=> SELECT relname, relfilenode, relpages

FROM pg_class

WHERE relname IN ('big', 'big_pkey');

relname | relfilenode | relpages

−−−−−−−−−−+−−−−−−−−−−−−−+−−−−−−−−−−

big | 16546 | 4097

big_pkey | 16551 | 14

(2 rows)

Restart the server to clear the cache, as now it contains some heap pages that have

been read during analysis.

postgres$ pg_ctl restart -l /home/postgres/logfile

Once the server is restarted, let’s read the whole table:

=> EXPLAIN (analyze, costs off, timing off, summary off)

SELECT id FROM big;

QUERY PLAN

−−

Seq Scan on big (actual rows=4097 loops=1)

(1 row)

Heap pages take only �� buffers, which make up the buffer ring for this operation:

=> SELECT count(*)

FROM pg_buffercache

WHERE relfilenode = pg_relation_filenode('big'::regclass);

count

−−−−−−−

32

(1 row)

But in the case of an index scan the buffer ring is not used:

183

Chapter 9 Buffer Cache

=> EXPLAIN (analyze, costs off, timing off, summary off)

SELECT * FROM big ORDER BY id;

QUERY PLAN

−−−

Index Scan using big_pkey on big (actual rows=4097 loops=1)

(1 row)

As a result, the buffer cache ends up containing the whole table and the whole

index:

=> SELECT relfilenode, count(*)

FROM pg_buffercache

WHERE relfilenode IN (

pg_relation_filenode('big'),

pg_relation_filenode('big_pkey')

)

GROUP BY relfilenode;

relfilenode | count

−−−−−−−−−−−−−+−−−−−−−

16546 | 4097

16551 | 14

(2 rows)

9.6 Choosing the Buffer Cache Size

The size of the buffer cache is defined by the128MB shared_buffers parameter. Its default

value is known to be low, so it makes sense to increase it right after the Postgre���

installation. You will have to reload the server in this case because shared memory

is allocated for cache at the server start.

But how can we determine an appropriate value?

Even a very large database has a limited set of hot data that is being used simulta-

neously. In the perfect world, it is this set that must fit the buffer cache (with some

space being reserved for one-time data). If the cache size is smaller, the actively

used pages will be evicting each other all the time, thus leading to excessive �/� op-

erations. But thoughtless increase of the cache size is not a good idea either: ���

is a scarce resource, and besides, larger cache incurs higher maintenance costs.

184

9.6 Choosing the Buffer Cache Size

The optimal buffer cache size differs from system to system: it depends on things

like the total size of the available memory, data profiles, and workload types. Un-

fortunately, there is no magic value or formula to suit everyone equally well.

You should also keep in mind that a cache miss in Postgre��� does not necessarily

trigger a physical �/� operation. If the buffer cache is quite small, the �� cache

uses the remaining free memory and can smooth things out to some extent. But

unlike the database, the operating system knows nothing about the read data, so

it applies a different eviction strategy.

A typical recommendation is to start with 1

4
of ��� and then adjust this setting as

required.

The best approach is experimentation: you can increase or decrease the cache size

and compare the system performance. Naturally, it requires having a test system

that is fully analogous to the production one, and you must be able to reproduce

typical workloads.

You can also run some analysis using the pg_buffercache extension. For example,

explore buffer distribution depending on their usage:

=> SELECT usagecount, count(*)

FROM pg_buffercache

GROUP BY usagecount

ORDER BY usagecount;

usagecount | count

−−−−−−−−−−−−+−−−−−−−

1 | 4128

2 | 50

3 | 4

4 | 4

5 | 73

| 12125

(6 rows)

N��� usage count values correspond to free buffers. They are quite expected in

this case because the server was restarted and remained idle most of the time. The

majority of the used buffers contain pages of the system catalog tables read by the

backend to fill its system catalog cache and to perform queries.

We can check what fraction of each relation is cached, and whether this data is hot

(a page is considered hot here if its usage count is bigger than one):

185

Chapter 9 Buffer Cache

=> SELECT c.relname,

count(*) blocks,

round(100.0 * 8192 * count(*) /

pg_table_size(c.oid)) AS "% of rel",

round(100.0 * 8192 * count(*) FILTER (WHERE b.usagecount > 1) /

pg_table_size(c.oid)) AS "% hot"

FROM pg_buffercache b

JOIN pg_class c ON pg_relation_filenode(c.oid) = b.relfilenode

WHERE b.reldatabase IN (

0, -- cluster-wide objects

(SELECT oid FROM pg_database WHERE datname = current_database())

)

AND b.usagecount IS NOT NULL

GROUP BY c.relname, c.oid

ORDER BY 2 DESC

LIMIT 10;

relname | blocks | % of rel | % hot

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−+−−−−−−−−−−+−−−−−−−

big | 4097 | 100 | 1

pg_attribute | 30 | 48 | 47

big_pkey | 14 | 100 | 0

pg_proc | 13 | 12 | 6

pg_operator | 11 | 61 | 50

pg_class | 10 | 59 | 59

pg_proc_oid_index | 9 | 82 | 45

pg_attribute_relid_attnum_index | 8 | 73 | 64

pg_proc_proname_args_nsp_index | 6 | 18 | 6

pg_amproc | 5 | 56 | 56

(10 rows)

This example shows that the big table and its index are fully cached, but their pages

are not being actively used.

Analyzing data from different angles, you can gain some useful insights. However,

make sure to follow these simple rules when running pg_buffercache queries:

• Repeat such queries several times since the returned figures will vary to some

extent.

• Do not run such queries non-stop because the pg_buffercache extension locks

the viewed buffers, even if only briefly.

186

9.7 Cache Warming

9.7 Cache Warming

After a server restart, the cache requires some time to warm up, that is, to accu-

mulate the actively used data. It may be helpful to cache certain tables right away,

and the pg_prewarm extension serves exactly this purpose:

=> CREATE EXTENSION pg_prewarm;

Apart from v. ��loading tables into the buffer cache (or into the �� cache only), this

extension can write the current cache state to disk and then restore it after the

server restart. To enable this functionality, you have to add this extension’s library

to shared_preload_libraries and restart the server:

=> ALTER SYSTEM SET shared_preload_libraries = 'pg_prewarm';

postgres$ pg_ctl restart -l /home/postgres/logfile

If the onpg_prewarm.autoprewarm setting has not changed, a process called auto-

prewarm leader will be started automatically after the server is reloaded; once in

300spg_prewarm.autoprewarm_interval seconds, this process will flush the list of cached

pages to disk (using one of the max_parallel_processes slots).

postgres$ ps -o pid,command \

--ppid `head -n 1 /usr/local/pgsql/data/postmaster.pid` | \

grep prewarm

23124 postgres: autoprewarm leader

Now that the server has been restarted, the big table is not cached anymore:

=> SELECT count(*)

FROM pg_buffercache

WHERE relfilenode = pg_relation_filenode('big'::regclass);

count

−−−−−−−

0

(1 row)

187

Chapter 9 Buffer Cache

If you have well-grounded assumptions that the whole table is going to be actively

used and disk access will make response times unacceptably high, you can load this

table into the buffer cache in advance:

=> SELECT pg_prewarm('big');

pg_prewarm

−−−−−−−−−−−−

4097

(1 row)

=> SELECT count(*)

FROM pg_buffercache

WHERE relfilenode = pg_relation_filenode('big'::regclass);

count

−−−−−−−

4097

(1 row)

The list of pages is dumped into the ������/autoprewarm.blocks file. You can wait

until the autoprewarm leader completes for the first time, but we will initiate the

dump manually:

=> SELECT autoprewarm_dump_now();

autoprewarm_dump_now

−−−−−−−−−−−−−−−−−−−−−−

4224

(1 row)

The number of flushed pages is bigger than ���� because all the used buffers are

taken into account. The file is written in a text format; it contains the ��s of the

database, tablespace, and file, as well as the fork and segment numbers:

postgres$ head -n 10 /usr/local/pgsql/data/autoprewarm.blocks

<<4224>>

0,1664,1262,0,0

0,1664,1260,0,0

16391,1663,1259,0,0

16391,1663,1259,0,1

16391,1663,1259,0,2

16391,1663,1259,0,3

16391,1663,1249,0,0

16391,1663,1249,0,1

16391,1663,1249,0,2

188

9.8 Local Cache

Let’s restart the server again.

postgres$ pg_ctl restart -l /home/postgres/logfile

The table appears in the cache right away:

=> SELECT count(*)

FROM pg_buffercache

WHERE relfilenode = pg_relation_filenode('big'::regclass);

count

−−−−−−−

4097

(1 row)

It is again the autoprewarm leader that does all the preliminary work: it reads the

file, sorts the pages by databases, reorders them (so that disk reads happen sequen-

tially if possible), and then passes them to the autoprewarm worker for processing.

9.8 Local Cache

Temporary tables do not follow the workflow described above. Since temporary

data is visible to a single process only, there is no point in loading it into the shared

buffer cache. Therefore, temporary data uses the local cache of the process that

owns the table.1

In general, local buffer cache works similar to the shared one:

• Page search is performed via a hash table.

• Eviction follows the standard algorithm (except that buffer rings are not used).

• Pages can be pinned to avoid eviction.

However, local cache implementation is much simpler because it has to handle

neither locks on memory structures p. ���(buffers can be accessed by a single process

only) nor fault tolerance p. ���(temporary data exists till the end of the session at the

most).

1 backend/storage/buffer/localbuf.c

189

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/storage/buffer/localbuf.c;hb=REL_14_STABLE

Chapter 9 Buffer Cache

Since only few sessions typically use temporary tables, local cache memory is as-

signed on demand. The maximum size of the local cache available to a session is

limited by the8MB temp_buffers parameter.

Despite a similar name, the temp_file_limit parameter has nothing to do with temporary

tables; it is related to files that may be created during query execution to temporarily store

intermediate data.

In the ������� command output, all calls to the local buffer cache are tagged as

local instead of shared:

=> CREATE TEMPORARY TABLE tmp AS SELECT 1;

=> EXPLAIN (analyze, buffers, costs off, timing off, summary off)

SELECT * FROM tmp;

QUERY PLAN

−−−

Seq Scan on tmp (actual rows=1 loops=1)

Buffers: local hit=1

Planning:

Buffers: shared hit=12 read=7

(4 rows)

190

10
Write-Ahead Log

10.1 Logging

In case of a failure, such as a power outage, an �� error, or a database server crash,

all the contents of ��� will be lost; only the data written to disk will persist. To

start the server after a failure, you have to restore data consistency. If the disk itself

has been damaged, the same issue has to be resolved by backup recovery.

In theory, you could maintain data consistency on disk at all times. But in prac-

tice it means that the server has to constantly write random pages to disk (even

though sequential writing is cheaper), and the order of such writes must guaran-

tee that consistency is not compromised at any particular moment (which is hard

to achieve, especially if you deal with complex index structures).

Just like the majority of database systems, Postgre��� uses a different approach.

While the server is running, some of the current data is available only in ���, its

writing to permanent storage being deferred. Therefore, the data stored on disk

is always inconsistent during server operation, as pages are never flushed all at

once. But each change that happens in ��� (such as a page update performed in

the buffer cache) is logged: Postgre��� creates a log entry that contains all the

essential information required to repeat this operation if the need arises.1

A log entry related to a page modification must be written to disk ahead of the

modified page itself. Hence the name of the log: write-ahead log, or ���. This

requirement guarantees that in case of a failure Postgre��� can read ��� entries

from disk and replay them to repeat the already completed operations whose re-

sults were still in ��� and did not make it to disk before the crash.

1 postgresql.org/docs/14/wal-intro.html

191

https://postgresql.org/docs/14/wal-intro.html

Chapter 10 Write-Ahead Log

Keeping a write-ahead log is usually more efficient than writing random pages to

disk. W�� entries constitute a continuous stream of data, which can be handled

even by ���s. Besides, ��� entries are often smaller than the page size.

It is required to log all operations that can potentially break data consistency in

case of a failure. In particular, the following actions are recorded in ���:

• page modifications performed in the buffer cache—since writes are deferred

• transaction commits and rollbacks—since the status change happens in ����

buffers and does not make it to disk right away

• file operations (like creation and deletion of files and directories when ta-

bles get added or removed)—since such operations must be in sync with data

changes

The following actions are not logged:

• operations on �������� tables

• operations on temporary tables—since their lifetime is anyway limited by the

session that spawns them

Prior to Postgre��� ��, hash indexes were not logged either. Their only purpose was to

match hash functions to different data types.

Apart from crash recovery, ��� can also be used for point-in-time recovery from a

backup and replication.

10.2 WAL Structure

Logical Structure

Speaking about its logical structure, we can describe ���1 as a stream of log en-

tries of variable length. Each entry contains some data about a particular operation

1 postgresql.org/docs/14/wal-internals.html

backend/access/transam/README

192

https://postgresql.org/docs/14/wal-internals.html
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/transam/README;hb=REL_14_STABLE

10.2 WAL Structure

preceded by a standard header.1 Among other things, the header provides the fol-

lowing information:

• transaction �� related to the entry

• the resource manager that interprets the entry2

• the checksum to detect data corruption

• entry length

• a reference to the previous ��� entry

W�� is usually read in the forward direction, but some utilities like pg_rewind may scan it

backwards.

W�� data itself can have different formats and meaning. For example, it can be a

page fragment that has to replace some part of the page at the specified offset. The

corresponding resource manager must know how to interpret and replay a particu-

lar entry. There are separate managers for tables, various index types, transaction

status, and other entities.

W�� files take up special buffers in the server’s shared memory. The size of the

cache used by ��� is defined by the −1wal_buffers parameter. By default, this size is

chosen automatically as 1

32
of the total buffer cache size.

W�� cache is quite similar to buffer cache, but it usually operates in the ring buffer

mode: new entries are added to its head, while older entries are saved to disk start-

ing at the tail. If ��� cache is too small, disk synchronization will be performed

more often than necessary.

Under low load, the insert position (the buffer’s head) is almost always the same as

the position of the entries that have already been saved to disk (the buffer’s tail):

=> SELECT pg_current_wal_lsn(), pg_current_wal_insert_lsn();

pg_current_wal_lsn | pg_current_wal_insert_lsn

−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−

0/3DF56000 | 0/3DF57968

(1 row)

1 include/access/xlogrecord.h
2 include/access/rmgrlist.h

193

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/include/access/xlogrecord.h;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/include/access/rmgrlist.h;hb=REL_14_STABLE

Chapter 10 Write-Ahead Log

Prior to Postgre��� ��, all function names contained the ���� acronym instead of ���.

To refer to a particular entry, Postgre��� uses a special data type: pg_lsn (log se-

quence number, ���). It represents a ��-bit offset in bytes from the start of the

��� to an entry. An ��� is displayed as two ��-bit numbers in the hexadecimal

notation separated by a slash.

Let’s create a table:

=> CREATE TABLE wal(id integer);

=> INSERT INTO wal VALUES (1);

Start a transaction and note the ��� of the ��� insert position:

=> BEGIN;

=> SELECT pg_current_wal_insert_lsn();

pg_current_wal_insert_lsn

−−−−−−−−−−−−−−−−−−−−−−−−−−−

0/3DF708D8

(1 row)

Now run some arbitrary command, for example, update a row:

=> UPDATE wal SET id = id + 1;

The page modification is performed in the buffer cache in ���. This change is

logged in a ��� page, also in ���. As a result, the insert ��� is advanced:

=> SELECT pg_current_wal_insert_lsn();

pg_current_wal_insert_lsn

−−−−−−−−−−−−−−−−−−−−−−−−−−−

0/3DF70920

(1 row)

To ensure that the modified data page is flushed to disk strictly after the corre-

sponding ��� entry, the page header stores the ��� of the latest ��� entry related

to this page. You can view this ��� using pageinspect:

=> SELECT lsn FROM page_header(get_raw_page('wal',0));

lsn

−−−−−−−−−−−−

0/3DF70920

(1 row)

194

10.2 WAL Structure

There is only one ��� for the whole database cluster, and new entries constantly

get appended to it. For this reason, the ��� stored in the page may turn out to be

smaller than the one returned by the pg_current_wal_insert_lsn function some time

ago. But if nothing has happened in the system, these numbers will be the same.

Now let’s commit the transaction:

=> COMMIT;

The commit operation is also logged, and the insert ��� changes again:

=> SELECT pg_current_wal_insert_lsn();

pg_current_wal_insert_lsn

−−−−−−−−−−−−−−−−−−−−−−−−−−−

0/3DF70948

(1 row)

A commit updates transaction status in ���� pages p. ��, which are kept in their own

cache.1 The ���� cache usually takes ��� pages in the shared memory.2 To make

sure that a ���� page is not flushed to disk before the corresponding ��� entry,

the ��� of the latest ��� entry has to be tracked for ���� pages too. But this in-

formation is stored in ���, not in the page itself.

At some point p. ������ entries will make it to disk; then it will be possible to evict ����

and data pages from the cache. If they had to be evicted earlier, it would have been

discovered, and ��� entries would have been forced to disk first.3

If you know two ��� positions, you can calculate the size of ��� entries between

them (in bytes) by simply subtracting one position from the other. You just have

to cast them to the pg_lsn type:

=> SELECT '0/3DF70948'::pg_lsn - '0/3DF708D8'::pg_lsn;

?column?

−−−−−−−−−−

112

(1 row)

1 backend/access/transam/slru.c
2 backend/access/transam/clog.c, CLOGShmemBuffers function
3 backend/storage/buffer/bufmgr.c, FlushBuffer function

195

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/transam/slru.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/transam/clog.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/storage/buffer/bufmgr.c;hb=REL_14_STABLE

Chapter 10 Write-Ahead Log

In this particular case, ��� entries related to ������ and ������ operations took

about a hundred of bytes.

You can use the same approach to estimate the volume of ��� entries generated

by a particular workload per unit of time. This information will be required for the

checkpoint setup.

Physical Structure

On disk, the ��� is stored in the ������/pg_wal directory as separate files, or seg-

ments. Their size is shown by the read-only16MB wal_segment_size parameter.

For high-load systems, it makes sense to increase the segment sizev. �� since it may

reduce the overhead, but this setting can be modified only during cluster initial-

ization (initdb --wal-segsize).

W�� entries get into the current file until it runs out of space; then Postgre���

starts a new file.

We can learn in which file a particular entry is located, and at what offset from the

start of the file:

=> SELECT file_name, upper(to_hex(file_offset)) file_offset

FROM pg_walfile_name_offset('0/3DF708D8');

file_name | file_offset

−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−

00000001000000000000003D | F708D8

(1 row)

timeline log sequence number

The name of the file consists of two parts. The highest eight hexadecimal digits

define the timeline used for recovery from a backup, while the rest represent the

highest ��� bits (the lowest ��� bits are shown in the file_offset field).

To view the current ��� filesv. �� , you can call the following function:

=> SELECT *

FROM pg_ls_waldir()

WHERE name = '00000001000000000000003D';

196

10.3 Checkpoint

name | size | modification

−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−

00000001000000000000003D | 16777216 | 2023−03−06 14:01:48+03

(1 row)

Now let’s take a look at the headers of the newly created ��� entries using the

pg_waldump utility, which can filter ��� entries both by the ��� range (like in this

example) and by a particular transaction ��.

The pg_waldump utility should be started on behalf of the postgres �� user, as it

needs access to ��� files on disk.

postgres$ /usr/local/pgsql/bin/pg_waldump \

-p /usr/local/pgsql/data/pg_wal -s 0/3DF708D8 -e 0/3DF70948#

rmgr: Heap len (rec/tot): 69/ 69, tx: 886, lsn:

0/3DF708D8, prev 0/3DF708B0, desc: HOT_UPDATE off 1 xmax 886 flags

0x40 ; new off 2 xmax 0, blkref #0: rel 1663/16391/16562 blk 0

rmgr: Transaction len (rec/tot): 34/ 34, tx: 886, lsn:

0/3DF70920, prev 0/3DF708D8, desc: COMMIT 2023−03−06 14:01:48.875861

MSK

Here we can see the headers of two entries.

The first one is the ���_������ p. ���operation handled by the Heap resource manager.

The blkref field shows the filename and the page �� of the updated heap page:

=> SELECT pg_relation_filepath('wal');

pg_relation_filepath

−−−−−−−−−−−−−−−−−−−−−−

base/16391/16562

(1 row)

The second entry is the ������ operation supervised by the Transaction resource

manager.

10.3 Checkpoint

To restore data consistency after a failure (that is, to perform recovery), Postgre���

has to replay the ��� in the forward direction and apply the entries that represent

lost changes to the corresponding pages. To find out what has been lost, the ���

197

Chapter 10 Write-Ahead Log

of the page stored on disk is compared to the ��� of the ��� entry. But at which

point should we start the recovery? If we start too late, the pages written to disk

before this point will fail to receive all the changes, which will lead to irreversible

data corruption. Starting from the very beginning is unrealistic: it is impossible

to store such a potentially huge volume of data, and neither is it possible to accept

such a long recovery time. We need a checkpoint that is gradually moving forward,

thusmaking it safe to start the recovery from this point and remove all the previous

��� entries.

The most straightforward way to create a checkpoint is to periodically suspend

all system operations and force all dirty pages to disk. This approach is of course

unacceptable, as the system will hang for an indefinite but quite significant time.

For this reason, the checkpoint is spread out over time, virtually constituting an

interval. Checkpoint execution is performed by a special background process called

checkpointer.1

Checkpoint start. The checkpointer process flushes to disk everything that can be

written instantaneously: ���� transaction status, subtransactions’ metadata,

and a few other structures.

Checkpoint execution. Most of the checkpoint execution time is spent on flushing

dirty pages to disk.2

First, a special tag is set in the headers of all the buffers that were dirty at the

checkpoint start. It happens very fast since no �/� operations are involved.

Then checkpointer traverses all the buffers and writes the tagged ones to disk.

Their pages are not evicted from the cache: they are simply written down, so

usage and pin counts can be ignored.

Pagesv. �.� are processed in the order of their ��s to avoid random writing if pos-

sible. For better load balancing, Postgre��� alternates between different ta-

blespaces (as they may be located on different physical devices).

1 backend/postmaster/checkpointer.c

backend/access/transam/xlog.c, CreateCheckPoint function
2 backend/storage/buffer/bufmgr.c, BufferSync function

198

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/postmaster/checkpointer.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/transam/xlog.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/storage/buffer/bufmgr.c;hb=REL_14_STABLE

10.3 Checkpoint

Backends can also write tagged buffers to disk—if they get to them first. In any

case, buffer tags are removed at this stage, so for the purpose of the checkpoint

each buffer will be written only once.

Naturally, pages can still be modified in the buffer cache while the checkpoint

is in progress. But since new dirty buffers are not tagged, checkpointer will

ignore them.

Checkpoint completion. When all the buffers that were dirty at the start of the

checkpoint are written to disk, the checkpoint is considered complete. From

now on (but not earlier!), the start of the checkpoint will be used as a new

starting point of recovery. All the ��� entries written before this point are

not required anymore.

time
checkpoint

failure

start of
recovery

required WAL files

time
checkpoint checkpoint

failure

start of
recovery

required WAL files

Finally, checkpointer creates a ��� entry that corresponds to the checkpoint

completion, specifying the checkpoint’s start ���. Since the checkpoint logs

nothing when it starts, this ��� can belong to a ��� entry of any type.

The ������/global/pg_control file also gets updated to refer to the latest com-

pleted checkpoint. (Until this process is over, pg_control keeps the previous

checkpoint.)

199

Chapter 10 Write-Ahead Log

checkpoint
start

CHECKPOINT

checkpoint
finish

Latest checkpoint location: 0/3E7EF818

Latest checkpoint's REDO location: 0/3E7EF7E0

PGDATA/global/pg_control

To figure out once and for all what points where, let’s take a look at a simple ex-

ample. We will make several cached pages dirty:

=> UPDATE big SET s = 'FOO';

=> SELECT count(*) FROM pg_buffercache WHERE isdirty;

count

−−−−−−−

4119

(1 row)

Note the current ��� position:

=> SELECT pg_current_wal_insert_lsn();

pg_current_wal_insert_lsn

−−−−−−−−−−−−−−−−−−−−−−−−−−−

0/3E7EF7E0

(1 row)

Now let’s complete the checkpoint manually. All the dirty pages will be flushed to

disk; since nothing happens in the system, new dirty pages will not appear:

=> CHECKPOINT;

=> SELECT count(*) FROM pg_buffercache WHERE isdirty;

count

−−−−−−−

0

(1 row)

Let’s see how the checkpoint is reflected in the ���:

200

10.4 Recovery

=> SELECT pg_current_wal_insert_lsn();

pg_current_wal_insert_lsn

−−−−−−−−−−−−−−−−−−−−−−−−−−−

0/3E7EF890

(1 row)

postgres$ /usr/local/pgsql/bin/pg_waldump \

-p /usr/local/pgsql/data/pg_wal -s 0/3E7EF7E0 -e 0/3E7EF890

rmgr: Standby len (rec/tot): 50/ 50, tx: 0, lsn:

0/3E7EF7E0, prev 0/3E7EF7B8, desc: RUNNING_XACTS nextXid 888

latestCompletedXid 887 oldestRunningXid 888

rmgr: XLOG len (rec/tot): 114/ 114, tx: 0, lsn:

0/3E7EF818, prev 0/3E7EF7E0, desc: CHECKPOINT_ONLINE redo

0/3E7EF7E0; tli 1; prev tli 1; fpw true; xid 0:888; oid 24754; multi

1; offset 0; oldest xid 726 in DB 1; oldest multi 1 in DB 1;

oldest/newest commit timestamp xid: 0/0; oldest running xid 888;

online

The latest ��� entry is related to the checkpoint completion (����������_������).

The start ��� of this checkpoint is specified after the word redo; this position cor-

responds to the latest inserted ��� entry at the time of the checkpoint start.

The same information can also be found in the pg_control file:

postgres$ /usr/local/pgsql/bin/pg_controldata \

-D /usr/local/pgsql/data | egrep 'Latest.*location'

Latest checkpoint location: 0/3E7EF818

Latest checkpoint's REDO location: 0/3E7EF7E0

10.4 Recovery

The first process launched at the server start is postmaster. In its turn, postmaster

spawns the startup process,1 which takes care of data recovery in case of a failure.

To determine whether recovery is needed, the startup process reads the pg_control

file and checks the cluster status. The pg_controldata utility enables us to view the

content of this file:

1 backend/postmaster/startup.c

backend/access/transam/xlog.c, StartupXLOG function

201

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/postmaster/startup.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/transam/xlog.c;hb=REL_14_STABLE

Chapter 10 Write-Ahead Log

postgres$ /usr/local/pgsql/bin/pg_controldata \

-D /usr/local/pgsql/data | grep state

Database cluster state: in production

A properly stopped server has the “shut down” status; the “in production” status

of a non-running server indicates a failure. In this case, the startup process will au-

tomatically initiate recovery from the start ��� of the latest completed checkpoint

found in the same pg_control file.

If the ������ directory contains a backup_label file related to a backup, the start ��� posi-

tion is taken from that file.

The startup process reads ��� entries one by one, starting from the defined posi-

tion, and applies them to data pages if the ��� of the page is smaller than the ���

of the ��� entry. If the page contains a bigger ���, ��� should not be applied; in

fact, it must not be applied because its entries are designed to be replayed strictly

sequentially.

However, some ��� entries constitute a full page image, or ���. Entries of this type

can be applied to any state of the page since all the page contents will be erased

anyway. Such modifications are called idempotent. Another example of an idempo-

tent operation is registering transaction status changes: each transaction status is

defined in ���� by certain bits that are set regardless of their previous values, so

there is no need to keep the ��� of the latest change in ���� pages.

W�� entries are applied to pages in the buffer cache, just like regular page updates

during normal operation.

Files get restored from��� in a similar manner: for example, if a ��� entry shows

that the file must exit, but it is missing for some reason, it will be created anew.

Once the recovery is over, all unlogged relations are overwritten by the correspond-

ing initialization forks.p. ��

Finally, the checkpoint is executed to secure the recovered state on disk.

The job of the startup process is now complete.

In its classic form, the recovery process consists of two phases. In the roll-forward phase,

��� entries are replayed, repeating the lost operations. In the roll-back phase, the server

aborts the transactions that were not yet committed at the time of the failure.

202

10.4 Recovery

In Postgre���, the second phase is not required. After the recovery, the ���� will contain

neither commit nor abort bits for an unfinished transaction (which technically denotes

an active transaction), but since it is known for sure that the transaction is not running

anymore, it will be considered aborted.1

We can simulate a failure by forcing the server to stop in the immediate mode:

postgres$ pg_ctl stop -m immediate

Here is the new cluster state:

postgres$ /usr/local/pgsql/bin/pg_controldata \

-D /usr/local/pgsql/data | grep 'state'

Database cluster state: in production

When we launch the server, the startup process sees that a failure has occurred and

enters the recovery mode:

postgres$ pg_ctl start -l /home/postgres/logfile

postgres$ tail -n 6 /home/postgres/logfile

LOG: database system was interrupted; last known up at 2023−03−06

14:01:49 MSK

LOG: database system was not properly shut down; automatic recovery

in progress

LOG: redo starts at 0/3E7EF7E0

LOG: invalid record length at 0/3E7EF890: wanted 24, got 0

LOG: redo done at 0/3E7EF818 system usage: CPU: user: 0.00 s,

system: 0.00 s, elapsed: 0.00 s

LOG: database system is ready to accept connections

If the server is being stopped normally, postmaster disconnects all clients and then

executes the final checkpoint to flush all dirty pages to disk.

Note the current ��� position:

=> SELECT pg_current_wal_insert_lsn();

pg_current_wal_insert_lsn

−−−−−−−−−−−−−−−−−−−−−−−−−−−

0/3E7EF908

(1 row)

1 backend/access/heap/heapam_visibility.c, HeapTupleSatisfiesMVCC function

203

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/heap/heapam_visibility.c;hb=REL_14_STABLE

Chapter 10 Write-Ahead Log

Now let’s stop the server properly:

postgres$ pg_ctl stop

Here is the new cluster state:

postgres$ /usr/local/pgsql/bin/pg_controldata \

-D /usr/local/pgsql/data | grep state

Database cluster state: shut down

At the end of the ���, we can see the ����������_�������� entry, which denotes

the final checkpoint:

postgres$ /usr/local/pgsql/bin/pg_waldump \

-p /usr/local/pgsql/data/pg_wal -s 0/3E7EF908

rmgr: XLOG len (rec/tot): 114/ 114, tx: 0, lsn:

0/3E7EF908, prev 0/3E7EF890, desc: CHECKPOINT_SHUTDOWN redo

0/3E7EF908; tli 1; prev tli 1; fpw true; xid 0:888; oid 24754; multi

1; offset 0; oldest xid 726 in DB 1; oldest multi 1 in DB 1;

oldest/newest commit timestamp xid: 0/0; oldest running xid 0;

shutdown

pg_waldump: fatal: error in WAL record at 0/3E7EF908: invalid record

length at 0/3E7EF980: wanted 24, got 0

The latest pg_waldumpmessage shows that the utility has read the ��� to the end.

Let’s start the instance again:

postgres$ pg_ctl start -l /home/postgres/logfile

10.5 Background Writing

If the backend needs to evict a dirty page from a buffer, it has to write this page to

disk. Such a situation is undesired because it leads to waits—it is much better to

perform writing asynchronously in the background.

This job is partially handled by checkpointer, but it is still not enough.

204

10.6 WAL Setup

Therefore, Postgre��� provides another process called bgwriter,1 specifically for

backgroundwriting. It relies on the same buffer search algorithmas eviction, except

for the two main differences:

• The bgwriter process uses its own clock hand that never lags behind that of

eviction and typically overtakes it.

• As the buffers are being traversed, the usage count is not reduced.

A dirty page is flushed to disk if the buffer is not pinned and has zero usage count.

Thus, bgwriter runs before eviction and proactively writes to disk those pages that

are highly likely to be evicted soon.

It raises the odds of the buffers selected for eviction being clean.

10.6 WAL Setup

Configuring Checkpoints

The checkpoint duration (to be more exact, the duration of writing dirty buffers to

disk) is defined by the 0.9checkpoint_completion_target parameter. Its value specifies

the fraction of time between the starts of two v. ��neighboring checkpoints that is allot-

ted to writing. Avoid setting this parameter to one: as a result, the next checkpoint

may be due before the previous one is complete. No disaster will happen, as it is

impossible to execute more than one checkpoint at a time, but normal operation

may still be disrupted.

When configuring other parameters, we can use the following approach. First, we

define an appropriate volume of ��� files to be stored between two neighboring

checkpoints. The bigger the volume, the smaller the overhead, but this value will

anyway be limited by the available free space and the acceptable recovery time.

To estimate the time required to generate this volume by normal load, you need to

note the initial insert ��� and check the difference between this and the current

insert positions from time to time.

1 backend/postmaster/bgwriter.c

205

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/postmaster/bgwriter.c;hb=REL_14_STABLE

Chapter 10 Write-Ahead Log

The received figure is assumed to be a typical interval between checkpoints, so we

will use it as the5min checkpoint_timeout parameter value. The default setting is likely

to be too small;p. ��� it is usually increased, for example, to �� minutes.

However, it is quite possible (and even probable) that the load will sometimes be

higher, so the size of ��� files generated during this interval will be too big. In

this case, the checkpoint must be executed more often. To set up such a trigger, we

will limit the size of ��� files required for recovery by the1GB max_wal_size parameter.

When this threshold is exceeded, the server invokes an extra checkpoint.1

W�� filesv. �� required for recovery contain all the entries both for the latest completed

checkpoint and for the current one,which is not completed yet. So to estimate their

total volume you should multiply the calculated ��� size between checkpoints by

1 + checkpoint_completion_target.

Prior to version ��, Postgre��� kept ��� files for two completed checkpoints, so the mul-

tiplier was 2 + checkpoint_completion_target.

Following this approach,most checkpoints are executed on schedule, once per the

checkpoint_timeout interval; but should the load increase, the checkpoint is trig-

gered when ��� size exceeds the max_wal_size value.

The actual progress is periodically checked against the expected figures:2

The actual progress is defined by the fraction of cached pages that have already

been processed.

The expected progress (by time) is defined by the fraction of time that has al-

ready elapsed, assuming that the checkpoint must be completed within the

checkpoint_timeout × checkpoint_completion_target interval.

The expected progress (by size) is defined by the fraction of the already filled ���

files, their expected number being estimated based on the max_wal_size ×
checkpoint_completion_target value.

If dirty pages get written to disk ahead of schedule, checkpointer is paused for a

while; if there is any delay by either of the parameters, it catches up as soon as

1 backend/access/transam/xlog.c, LogCheckpointNeeded & CalculateCheckpointSegments functions
2 backend/postmaster/checkpointer.c, IsCheckpointOnSchedule function

206

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/transam/xlog.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/postmaster/checkpointer.c;hb=REL_14_STABLE

10.6 WAL Setup

possible.1 Since both time and data size are taken into account, Postgre��� can

manage scheduled and on-demand checkpoints using the same approach.

Once the checkpoint has been completed, ��� files that are not required for recov-

ery anymore are deleted;2 however, several files (up to 80MBmin_wal_size in total) are

kept for reuse and are simply renamed.

Such renaming v. ��reduces the overhead incurred by constant file creation and dele-

tion, but you can turn off this feature using the onwal_recycle parameter if you do not

need it.

The following figure shows how the size of ��� files stored on disk changes under

normal conditions.

time

WAL size

checkpoint_timeout

m
ax

_w
al
_s
iz
e

the size of WAL generated between
the starts of two checkpoints

It is important to keep in mind that the actual size of ��� files on disk may exceed

the max_wal_size value:

• The max_wal_size parameter specifies the desired target value rather than a

hard limit. If the load spikes, writing may lag behind the schedule.

• The server has no right to delete ��� files that are yet to be replicated or han-

dled by continuous archiving. If enabled, this functionalitymust be constantly

monitored, as it can easily cause a disk overflow.

1 backend/postmaster/checkpointer.c, CheckpointWriteDelay function
2 backend/access/transam/xlog.c, RemoveOldXlogFiles function

207

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/postmaster/checkpointer.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/transam/xlog.c;hb=REL_14_STABLE

Chapter 10 Write-Ahead Log

• You can reserve a certain amount of spacev. �� for ��� files by configuring the

0MB wal_keep_size parameter.

Configuring Background Writing

Once checkpointer is configured, you should also set up bgwriter. Together, these

processes must be able to cope with writing dirty buffers to disk before backends

need to reuse them.

During its operation, bgwriter makes periodic pauses, sleeping for200ms bgwriter_delay

units of time.

The number of pages written between two pauses depends on the average number

of buffers accessed by backends since the previous run (Postgre��� uses a moving

average to level out possible spikes and avoid depending on very old data at the

same time). The calculated number is then multiplied by2 bgwriter_lru_multiplier.

But in any case, the number of pages written in a single run cannot exceed the

100 bgwriter_lru_maxpages value.

If no dirty buffers are detected (that is, nothing happens in the system), bgwriter

sleeps until one of the backends accesses a buffer. Then it wakes up and continues

its regular operation.

Monitoring

Checkpoint settings can and should be tuned based on monitoring data.

If size-triggered checkpoints have to be performed more often than defined by the

30s checkpoint_warning parameter, Postgre��� issues a warning. This setting should

be brought in line with the expected peak load.

Theoff log_checkpoints parameter enables printing checkpoint-related information

into the server log. Let’s turn it on:

=> ALTER SYSTEM SET log_checkpoints = on;

=> SELECT pg_reload_conf();

Now we will modify some data and execute a checkpoint:

208

10.6 WAL Setup

=> UPDATE big SET s = 'BAR';

=> CHECKPOINT;

The server log shows the number of written buffers, some statistics on ��� file

changes after the checkpoint, the duration of the checkpoint, and the distance (in

bytes) between the starts of two neighboring checkpoints:

postgres$ tail -n 2 /home/postgres/logfile

LOG: checkpoint starting: immediate force wait

LOG: checkpoint complete: wrote 4100 buffers (25.0%); 0 WAL file(s)

added, 1 removed, 0 recycled; write=0.076 s, sync=0.009 s,

total=0.099 s; sync files=3, longest=0.007 s, average=0.003 s;

distance=9213 kB, estimate=9213 kB

The most useful data that can affect your configuration decisions is statistics on

background writing and checkpoint execution provided in the pg_stat_bgwriter

view.

Prior to version 9.2, both tasks were performed by bgwriter; then a separate checkpointer

process was introduced, but the common view remained unchanged.

=> SELECT * FROM pg_stat_bgwriter \gx

−[RECORD 1]−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

checkpoints_timed | 0

checkpoints_req | 14

checkpoint_write_time | 33111

checkpoint_sync_time | 221

buffers_checkpoint | 14253

buffers_clean | 13066

maxwritten_clean | 122

buffers_backend | 84226

buffers_backend_fsync | 0

buffers_alloc | 86700

stats_reset | 2023−03−06 14:00:07.369124+03

Among other things, this view displays the number of completed checkpoints:

• The checkpoints_timed field shows scheduled checkpoints (which are triggered

when the checkpoint_timeout interval is reached).

• The checkpoints_req field shows on-demand checkpoints (including those trig-

gered when the max_wal_size size is reached).

209

Chapter 10 Write-Ahead Log

A large checkpoint_req value (as compared to checkpoints_timed) indicates that

checkpoints are performed more often than expected.

The following statistics on the number of written pages are also very important:

• buffers_checkpoint pages written by checkpointer

• buffers_backend pages written by backends

• buffers_clean pages written by bgwriter

In a well-configured system, the buffers_backend value must be considerably lower

than the sum of buffers_checkpoint and buffers_clean.

When setting up background writing, pay attention to themaxwritten_clean value:

it shows how many times bgwriter had to stop because of exceeding the threshold

defined by bgwriter_lru_maxpages.

The following call will drop the collected statistics:

=> SELECT pg_stat_reset_shared('bgwriter');

210

11
WAL Modes

11.1 Performance

While the server is running normally, ��� files are being constantly written to disk.

However, these writes are sequential: there is almost no random access, so even

���s can cope with this task. Since this type of load is very different from a typical

data file access, it may be worth setting up a separate physical storage for ���

files and replacing the ������/pg_wal catalog by a symbolic link to a directory in a

mounted file system.

There are a couple of situations when ��� files have to be both written and read. The

first one is the obvious case of crash recovery; the second one is stream replication. The

walsender1 process reads ��� entries directly from files.2 So if a replica does not receive

��� entries while the required pages are still in the �� buffers of the primary server, the

data has to be read from disk. But the access will still be sequential rather than random.

��� entries can be written in one of the following modes:

• The synchronousmode forbids any further operations until a transaction com-

mit saves all the related ��� entries to disk.

• The asynchronous mode implies instant transaction commits, with ��� en-

tries being written to disk later in the background.

The current mode is defined by the onsynchronous_commit parameter.

1 backend/replication/walsender.c
2 backend/access/transam/xlogreader.c

211

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/replication/walsender.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/transam/xlogreader.c;hb=REL_14_STABLE

Chapter 11 WAL Modes

Synchronous mode. To reliably register the fact of a commit, it is not enough to

simply pass ��� entries to the operating system; you have to make sure that

disk synchronization has completed successfully. Since synchronization im-

plies actual �/� operations (which are quite slow), it is beneficial to perform it

as seldom as possible.

For this purpose, the backend that completes the transaction and writes ���

entries to disk can make a small pause as defined by the0s commit_delay param-

eter. However, it will only happen if there are at least5 commit_siblings active

transactions in the system:1 during this pause, some of them may finish, and

the server will manage to synchronize all the ��� entries in one go. It is a lot

like holding doors of an elevator for someone to rush in.

By default, there is no pause. It makes sense to modify the commit_delay pa-

rameter only for systems that perform a lot of short ���� transactions.

After a potential pause, the process that completes the transaction flushes

all the accumulated ��� entries to disk and performs synchronization (it is

important to save the commit entry and all the previous entries related to this

transaction; the rest is written just because it does not increase the cost).

From this time on, the ����’s durability requirement is guaranteed—the trans-

action is considered to be reliably committed.2 That’s why the synchronous

mode is the default one.

The downside of the synchronous commit is longer latencies (the ������ com-

mand does not return control until the end of synchronization) and lower sys-

tem throughput, especially for ���� loads.

Asynchronous mode. To enable asynchronous commits,3 you have to turn off the

synchronous_commit parameter.

In the asynchronous mode, ��� entries are written to disk by the walwriter4

process, which alternates between work and sleep. The duration of pauses is

defined by the200ms wal_writer_delay value.

1 backend/access/transam/xlog.c, XLogFlush function
2 backend/access/transam/xlog.c, RecordTransactionCommit function
3 postgresql.org/docs/14/wal-async-commit.html
4 backend/postmaster/walwriter.c

212

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/transam/xlog.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/transam/xlog.c;hb=REL_14_STABLE
https://postgresql.org/docs/14/wal-async-commit.html
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/postmaster/walwriter.c;hb=REL_14_STABLE

11.1 Performance

Waking up from a pause, the process checks the cache for new completely filled

��� pages. If any such pages have appeared, the process writes them to disk,

skipping the current page. Otherwise, it writes the current half-empty page

since it has woken up anyway.1

The purpose of this algorithm is to avoid flushing one and the same page

several times, which brings noticeable performance gains for workloads with

intensive data changes.

Although ��� cache is used as a ring buffer, walwriter stops when it reaches

the last page of the cache; after a pause, the next writing cycle starts from the

first page. So in the worst casewalwriter needs three runs to get to a particular

��� entry: first, it will write all full pages located at the end of the cache, then

it will get back to the beginning, and finally, it will handle the underfilled page

containing the entry. But in most cases it takes one or two cycles.

Synchronization is performed each time the 1MBwal_writer_flush_after amount of

data is written, and once again at the end of the writing cycle.

Asynchronous commits are faster than synchronous ones since they do not

have to wait for physical writes to disk. But reliability suffers: you can lose

the data committed within the 3×wal_writer_delay timeframe before a failure

(which is 0.6 seconds by default).

In the real world, these two modes complement each other. In the synchronous

mode, ��� entries related to a long transaction can still be written asynchronously

to free ��� buffers. And vice versa, a ��� entry related to a page that is about to

be evicted from the buffer cache will be immediately flushed to disk even in the

asynchronous mode—otherwise, it is impossible to continue operation.

In most cases, a hard choice between performance and durability has to be made

by the system designer.

The synchronous_commit parameter can also be set for particular transactions. If it

is possible to classify all transactions at the application level as either absolutely

critical (such as handling financial data) or less important, you can boost perfor-

mance while risking to lose only non-critical transactions.

1 backend/access/transam/xlog.c, XLogBackgroundFlush function

213

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/transam/xlog.c;hb=REL_14_STABLE

Chapter 11 WAL Modes

To get some idea of potential performance gains of the asynchronous commit, let’s

compare latency and throughput in the two modes using a pgbench test.1

First, initialize the required tables:

postgres$ /usr/local/pgsql/bin/pgbench -i internals

Start a ��-second test in the synchronous mode:

postgres$ /usr/local/pgsql/bin/pgbench -T 30 internals

pgbench (14.7)

starting vacuum...end.

transaction type: <builtin: TPC−B (sort of)>

scaling factor: 1

query mode: simple

number of clients: 1

number of threads: 1

duration: 30 s

number of transactions actually processed: 20123

latency average = 1.491 ms

initial connection time = 2.507 ms

tps = 670.809688 (without initial connection time)

And now run the same test in the asynchronous mode:

=> ALTER SYSTEM SET synchronous_commit = off;

=> SELECT pg_reload_conf();

postgres$ /usr/local/pgsql/bin/pgbench -T 30 internals

pgbench (14.7)

starting vacuum...end.

transaction type: <builtin: TPC−B (sort of)>

scaling factor: 1

query mode: simple

number of clients: 1

number of threads: 1

duration: 30 s

number of transactions actually processed: 61809

latency average = 0.485 ms

initial connection time = 1.915 ms

tps = 2060.399861 (without initial connection time)

1 postgresql.org/docs/14/pgbench.html

214

https://postgresql.org/docs/14/pgbench.html

11.2 Fault Tolerance

In the asynchronous mode, this simple benchmark shows a significantly lower la-

tency and higher throughput (���). Naturally, each particular system will have its

own figures depending on the current load, but it is clear that the impact on short

���� transactions can be quite tangible.

Let’s restore the default settings:

=> ALTER SYSTEM RESET synchronous_commit;

=> SELECT pg_reload_conf();

11.2 Fault Tolerance

It is self-evident that write-ahead logging must guarantee crash recovery under

any circumstances (unless the persistent storage itself is broken). There are many

factors that can affect data consistency, but I will cover only the most important

ones: caching, data corruption, and non-atomic writes.1

Caching

Before reaching a non-volatile storage (such as a hard disk), data can pass through

various caches.

A disk write simply instructs the operating system to place the data into its cache

(which is also prone to crashes, just like any other part of ���). The actual writing

is performed asynchronously, as defined by the settings of the �/� scheduler of the

operating system.

Once the scheduler decides to flush the accumulated data, this data is moved to

the cache of a storage device (like an ���). Storage devices can also defer writing,

for example, to group of adjacent pages together. A ���� controller adds one more

caching level between the disk and the operating system.

Unless special measures are taken, the moment when the data is reliably stored

on disk remains unknown. It is usually not so important because we have the ���,

1 postgresql.org/docs/14/wal-reliability.html

215

https://postgresql.org/docs/14/wal-reliability.html

Chapter 11 WAL Modes

but ��� entries themselves must be reliably saved on disk right away.1 It is equally

true for the asynchronousmode—otherwise, it is impossible to guarantee that ���

entries get do disk ahead of the modified data.

The checkpointer process must also save the data in a reliable way, ensuring that

dirty pages make it to disk from the �� cache. Besides, it has to synchronize all the

file operations that have been performed by other processes (such as page writes

or file deletions): when the checkpoint completes, the results of all these actions

must be already saved on disk.2

There are also some other situations that demand fail-safe writing, such as execut-

ing unlogged operations at theminimal��� level.

Operating systems provide various means to guarantee immediate writing of data

into a non-volatile storage. All of them boil down to the following two main ap-

proaches: either a separate synchronization command is called after writing (such

as fsync or fdatasync), or the requirement to perform synchronization (or even di-

rect writing that bypasses �� cache) is specified when the file is being opened or

written into.

The pg_test_fsync utility can help you determine the best way to synchronize the

��� depending on your �� and file system; the preferred method can be specified

in the wal_sync_method parameter. For other operations, an appropriate synchro-

nization method is selected automatically and cannot be configured.3

A subtle aspect here is that in each particular case the most suitable method de-

pends on the hardware. For example, if you use a controller with a backup battery,

you can take advantage of its cache, as the battery will protect the data in case of

a power outage.

You should keep in mind that the asynchronous commit and lack of synchroniza-

tion are two totally different stories. Turning off synchronization (by theon fsync

parameter) boosts system performance, yet any failure will lead to fatal data loss.

The asynchronous mode guarantees crash recovery up to a consistent state, but

some of the latest data updates may be missing.

1 backend/access/transam/xlog.c, issue_xlog_fsync function
2 backend/storage/sync/sync.c
3 backend/storage/file/fd.c, pg_fsync function

216

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/transam/xlog.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/storage/sync/sync.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/storage/file/fd.c;hb=REL_14_STABLE

11.2 Fault Tolerance

Data Corruption

Technical equipment is imperfect, and data can get damaged both in memory and

on disk, or while it is being transferred via interface cables. Such errors are usually

handled at the hardware level, yet some can escape.

To catch issues in good time, Postgre��� always protects��� entries by checksums.

Checksums can be calculated for data pages aswell.1 It is done either during cluster

initialization or by running the v. ��pg_checksums2 utility when the server is stopped.3

In production systems, checksums must always be enabled, despite some (minor)

calculation and verification overhead. It raises the chance of timely corruption

discovery, even though some corner cases still remain:

• Checksum verification is performed only when the page is accessed, so data

corruption can go unnoticed for a long time, up to the point when it gets into

all backups and leaves no source of correct data.

• A zeroed page is considered correct, so if the file system zeroes out a page by

mistake, this issue will not be discovered.

• Checksums are calculated only for the main fork of relations; other forks and

files (such as transaction status in ����) remain unprotected.

Let’s take a look at the read-only data_checksums parameter to make sure that

checksums are enabled:

=> SHOW data_checksums;

data_checksums

−−−−−−−−−−−−−−−−

on

(1 row)

Now stop the server and zero out several bytes in the zero page of the main fork of

the table:

1 backend/storage/page/README
2 postgresql.org/docs/14/app-pgchecksums.html
3 commitfest.postgresql.org/27/2260

217

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/storage/page/README;hb=REL_14_STABLE
https://postgresql.org/docs/14/app-pgchecksums.html
https://commitfest.postgresql.org/27/2260

Chapter 11 WAL Modes

=> SELECT pg_relation_filepath('wal');

pg_relation_filepath

−−−−−−−−−−−−−−−−−−−−−−

base/16391/16562

(1 row)

postgres$ pg_ctl stop

postgres$ dd if=/dev/zero of=/usr/local/pgsql/data/base/16391/16562 \

oflag=dsync conv=notrunc bs=1 count=8

8+0 records in

8+0 records out

8 bytes copied, 0,00776573 s, 1,0 kB/s

Start the server again:

postgres$ pg_ctl start -l /home/postgres/logfile

In fact, we could have left the server running—it is enough to write the page to

disk and evict it from cache (otherwise, the server will continue using its cached

version). But such a workflow is harder to reproduce.

Now let’s attempt to read the table:

=> SELECT * FROM wal LIMIT 1;

WARNING: page verification failed, calculated checksum 20397 but

expected 28733

ERROR: invalid page in block 0 of relation base/16391/16562

If the data cannot be restored from a backup, it makes sense to at least try to read

the damaged page (risking to get garbled output). For this purpose, you have to

enable theoff ignore_checksum_failure parameter:

=> SET ignore_checksum_failure = on;

=> SELECT * FROM wal LIMIT 1;

WARNING: page verification failed, calculated checksum 20397 but

expected 28733

id

−−−−

2

(1 row)

Everything went fine in this case because we have damaged a non-critical part of

the page header (the ��� of the latest ��� entry), not the data itself.

218

11.2 Fault Tolerance

Non-Atomic Writes

A database page usually takes � k�, but at the low level writing is performed by

blocks, which are often smaller (typically ��� bytes or � k�). Thus, if a failure oc-

curs, a page may be written only partially. It makes no sense to apply regular ���

entries to such a page during recovery.

To avoid partial writes, Postgre��� saves a full page image p. ���(���) in the ��� when

this page is modified for the first time after the checkpoint start. This behavior is

controlled by the onfull_page_writes parameter, but turning it off can lead to fatal data

corruption.

If the recovery process comes across an ��� in the ���, it will unconditionally write

it to disk (without checking its ���); just like any ��� entry, ���s are protected by

checksums, so their damage cannot go unnoticed. Regular ��� entries will then be

applied to this state, which is guaranteed to be correct.

There is no separate ��� entry type for setting hint bits p. ��: this operation is consid-

ered non-critical because any query that accesses a page will set the required bits

anew. However, any hint bit change will affect the page’s checksum. So if check-

sums are enabled (or if the offwal_log_hints parameter is on), hint bit modifications

are logged as ���s.1

Even though the logging mechanism excludes empty space from an ���,2 the size

of the generated ��� files still significantly increases. The situation can be greatly

improved if you enable ��� compression via the offwal_compression parameter.

Let’s run a simple experiment using the pgbench utility. We will perform a check-

point and immediately start a benchmark test with a hard-set number of transac-

tions:

=> CHECKPOINT;

=> SELECT pg_current_wal_insert_lsn();

pg_current_wal_insert_lsn

−−−−−−−−−−−−−−−−−−−−−−−−−−−

0/42CE5DA8

(1 row)

1 backend/storage/buffer/bufmgr.c, MarkBufferDirtyHint function
2 backend/access/transam/xloginsert.c, XLogRecordAssemble function

219

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/storage/buffer/bufmgr.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/transam/xloginsert.c;hb=REL_14_STABLE

Chapter 11 WAL Modes

postgres$ /usr/local/pgsql/bin/pgbench -t 20000 internals

=> SELECT pg_current_wal_insert_lsn();

pg_current_wal_insert_lsn

−−−−−−−−−−−−−−−−−−−−−−−−−−−

0/449113E0

(1 row)

Here is the size of the generated ��� entries:

=> SELECT pg_size_pretty('0/449755C0'::pg_lsn - '0/42CE5DA8'::pg_lsn);

pg_size_pretty

−−−−−−−−−−−−−−−−

29 MB

(1 row)

In this example, ���s take more than half of the total ��� size. You can see it for

yourself in the collected statistics that show the number of��� entries (N), the size

of regular entries (Record size), and the ��� size for each resource type (Type):

postgres$ /usr/local/pgsql/bin/pg_waldump --stats \

-p /usr/local/pgsql/data/pg_wal -s 0/42CE5DA8 -e 0/449755C0

Type N (%) Record size (%) FPI size (%)

−−−− − −−− −−−−−−−−−−− −−− −−−−−−−− −−−

XLOG 4294 (3,31) 210406 (2,50) 19820068 (93,78)

Transaction 20004 (15,41) 680536 (8,10) 0 (0,00)

Storage 1 (0,00) 42 (0,00) 0 (0,00)

CLOG 1 (0,00) 30 (0,00) 0 (0,00)

Standby 6 (0,00) 416 (0,00) 0 (0,00)

Heap2 24774 (19,09) 1536253 (18,27) 24576 (0,12)

Heap 80234 (61,81) 5946242 (70,73) 295664 (1,40)

Btree 494 (0,38) 32747 (0,39) 993860 (4,70)

−−−−−− −−−−−−−− −−−−−−−−

Total 129808 8406672 [28,46%] 21134168 [71,54%]

This ratio will be smaller if data pages get modified between checkpoints several

times. It is yet another reason to perform checkpoints less often.

We will repeat the same experiment to see if compression can help.

=> ALTER SYSTEM SET wal_compression = on;

=> SELECT pg_reload_conf();

=> CHECKPOINT;

220

11.3 WAL Levels

=> SELECT pg_current_wal_insert_lsn();

pg_current_wal_insert_lsn

−−−−−−−−−−−−−−−−−−−−−−−−−−−

0/44D4C228

(1 row)

postgres$ /usr/local/pgsql/bin/pgbench -t 20000 internals

=> SELECT pg_current_wal_insert_lsn();

pg_current_wal_insert_lsn

−−−−−−−−−−−−−−−−−−−−−−−−−−−

0/457653B0

(1 row)

Here is the ��� size with compression enabled:

=> SELECT pg_size_pretty('0/457653B0'::pg_lsn - '0/44D4C228'::pg_lsn);

pg_size_pretty

−−−−−−−−−−−−−−−−

10 MB

(1 row)

postgres$ /usr/local/pgsql/bin/pg_waldump --stats \

-p /usr/local/pgsql/data/pg_wal -s 0/44D4C228 -e 0/457653B0

Type N (%) Record size (%) FPI size (%)

−−−− − −−− −−−−−−−−−−− −−− −−−−−−−− −−−

XLOG 344 (0,29) 17530 (0,22) 435492 (17,75)

Transaction 20001 (16,73) 680114 (8,68) 0 (0,00)

Storage 1 (0,00) 42 (0,00) 0 (0,00)

Standby 5 (0,00) 330 (0,00) 0 (0,00)

Heap2 18946 (15,84) 1207425 (15,42) 101601 (4,14)

Heap 80141 (67,02) 5918020 (75,56) 1627008 (66,31)

Btree 143 (0,12) 8443 (0,11) 289654 (11,80)

−−−−−− −−−−−−−− −−−−−−−−

Total 119581 7831904 [76,14%] 2453755 [23,86%]

To sum it up, when there is a large number of ���s caused by enabled checksums or

full_page_writes (that is, almost always), it makes sense to use compression despite

some additional ��� overhead.

11.3 WAL Levels

The main objective of write-ahead logging is to enable crash recovery. But if you

extend the scope of logged information, a ��� can be used for other purposes too.

221

Chapter 11 WAL Modes

Postgre��� providesminimal, replica, and logical logging levels. Each level includes

everything that is logged on the previous one and adds some more information.

The level in use is defined by thereplica wal_level parameter; its modification requires a

server restart.

Minimal

The minimal level guarantees only crash recovery. To save space, the operations

on relations that have been created or truncated within the current transaction

are not logged if they incur insertion of large volumes of data (like in the case

of ������ ����� �� ������ and ������ ����� commands).1 Instead of being logged,

all the required data is immediately flushed to disk, and system catalog changes

become visible right after the transaction commit.

If such an operation is interrupted by a failure, the data that has already made it

to disk remains invisible and does not affect consistency. If a failure occurs when

the operation is complete, all the data required for applying the subsequent ���

entries is already saved to disk.

The volume of datav. �� that has to be written into a newly created relation for this

optimization to take effect is defined by the2MB wal_skip_threshold parameter.

Let’s see what gets logged at theminimal level.

By default,v. �� a higher replica level is used, which supports data replication. If you

choose the minimal level, you also have to set the allowed number of walsender

processes to zero in the10 max_wal_senders parameter:

=> ALTER SYSTEM SET wal_level = minimal;

=> ALTER SYSTEM SET max_wal_senders = 0;

The server has to be restarted for these changes to take effect:

postgres$ pg_ctl restart -l /home/postgres/logfile

Note the current ��� position:

=> SELECT pg_current_wal_insert_lsn();

1 include/utils/rel.h, RelationNeedsWAL macro

222

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/include/utils/rel.h;hb=REL_14_STABLE

11.3 WAL Levels

pg_current_wal_insert_lsn

−−−−−−−−−−−−−−−−−−−−−−−−−−−

0/45767698

(1 row)

Truncate the table and keep inserting new rows within the same transaction until

the wal_skip_threshold is exceeded:

=> BEGIN;

=> TRUNCATE TABLE wal;

=> INSERT INTO wal

SELECT id FROM generate_series(1,100000) id;

=> COMMIT;

=> SELECT pg_current_wal_insert_lsn();

pg_current_wal_insert_lsn

−−−−−−−−−−−−−−−−−−−−−−−−−−−

0/45767840

(1 row)

Instead of creating a new table, I run the �������� command as it generates fewer ���

entries.

Let’s examine the generated ��� using the already familiar pg_waldump utility.

postgres$ /usr/local/pgsql/bin/pg_waldump \

-p /usr/local/pgsql/data/pg_wal -s 0/45767698 -e 0/45767840#

rmgr: Storage len (rec/tot): 42/ 42, tx: 0, lsn:

0/45767698, prev 0/45767660, desc: CREATE base/16391/24784

rmgr: Heap len (rec/tot): 123/ 123, tx: 122844, lsn:

0/457676C8, prev 0/45767698, desc: UPDATE off 45 xmax 122844 flags

0x60 ; new off 48 xmax 0, blkref #0: rel 1663/16391/1259 blk 0

rmgr: Btree len (rec/tot): 64/ 64, tx: 122844, lsn:

0/45767748, prev 0/457676C8, desc: INSERT_LEAF off 176, blkref #0:

rel 1663/16391/2662 blk 2

rmgr: Btree len (rec/tot): 64/ 64, tx: 122844, lsn:

0/45767788, prev 0/45767748, desc: INSERT_LEAF off 147, blkref #0:

rel 1663/16391/2663 blk 2

rmgr: Btree len (rec/tot): 64/ 64, tx: 122844, lsn:

0/457677C8, prev 0/45767788, desc: INSERT_LEAF off 254, blkref #0:

rel 1663/16391/3455 blk 4

rmgr: Transaction len (rec/tot): 54/ 54, tx: 122844, lsn:

0/45767808, prev 0/457677C8, desc: COMMIT 2023−03−06 14:03:58.395214

MSK; rels: base/16391/24783

223

Chapter 11 WAL Modes

The first entry logs creation of a new file for the relation (since ��������p. ��� virtually

rewrites the table).

The next four entries are associated with system catalog operations. They reflect

the changes in the pg_class table and its three indexes.

Finally, there is a commit-related entry. Data insertion is not logged.

Replica

During crash recovery, ��� entries are replayed to restore the data on disk up to

a consistent state. Backup recovery works in a similar way, but it can also restore

the database state up to the specified recovery target point using a ��� archive.

The number of archived ��� entries can be quite high (for example, they can span

several days), so the recovery period will include multiple checkpoints. Therefore,

theminimal��� level is not enough: it is impossible to repeat an operation if it is

unlogged. For backup recovery, ��� files must include all the operations.

The same is true for replication: unlogged commands will not be sent to a replica

and will not be replayed on it.

Things get even more complicated if a replica is used for executing queries. First

of all, it needs to have the information on exclusive locksp. ��� acquired on the primary

server since they may conflict with queries on the replica. Second, it must be able

to capture snapshotsp. �� ,which requires the information on active transactions. When

we deal with a replica, both local transactions and those running on the primary

server have to be taken into account.

The only way to send this data to a replica is to periodically write it into ��� files.1

It is done by the bgwriter2 process, once in �� seconds (the interval is hard-coded).

The ability to perform data recovery from a backup and use physical replication is

guaranteed at the replica level.

1 backend/storage/ipc/standby, LogStandbySnapshot function
2 backend/postmaster/bgwriter.c

224

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/storage/ipc/standby;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/postmaster/bgwriter.c;hb=REL_14_STABLE

11.3 WAL Levels

The replica level v. ��is used by default, so we can simply reset the parameters config-

ured above and restart the server:

=> ALTER SYSTEM RESET wal_level;

=> ALTER SYSTEM RESET max_wal_senders;

postgres$ pg_ctl restart -l /home/postgres/logfile

Let’s repeat the same workflow as before (but now we will insert only one row to

get a neater output):

=> SELECT pg_current_wal_insert_lsn();

pg_current_wal_insert_lsn

−−−−−−−−−−−−−−−−−−−−−−−−−−−

0/45D88E48

(1 row)

=> BEGIN;

=> TRUNCATE TABLE wal;

=> INSERT INTO wal VALUES (42);

=> COMMIT;

=> SELECT pg_current_wal_insert_lsn();

pg_current_wal_insert_lsn

−−−−−−−−−−−−−−−−−−−−−−−−−−−

0/45D89108

(1 row)

Check out the generated ��� entries.

Apart from what we have seen at the minimal level, we have also got the following

entries:

• replication-related entries of the Standby resource manager: �������_�����

(active transactions) and ����

• the entry that logs the ������+���� operation, which initializes a new page and

inserts a new row into this page

225

Chapter 11 WAL Modes

postgres$ /usr/local/pgsql/bin/pg_waldump \

-p /usr/local/pgsql/data/pg_wal -s 0/45D88E48 -e 0/45D89108

rmgr: Standby len (rec/tot): 42/ 42, tx: 122846, lsn:

0/45D88E48, prev 0/45D88DD0, desc: LOCK xid 122846 db 16391 rel 16562

rmgr: Storage len (rec/tot): 42/ 42, tx: 122846, lsn:

0/45D88E78, prev 0/45D88E48, desc: CREATE base/16391/24786

rmgr: Heap len (rec/tot): 123/ 123, tx: 122846, lsn:

0/45D88EA8, prev 0/45D88E78, desc: UPDATE off 49 xmax 122846 flags

0x60 ; new off 50 xmax 0, blkref #0: rel 1663/16391/1259 blk 0

rmgr: Btree len (rec/tot): 64/ 64, tx: 122846, lsn:

0/45D88F28, prev 0/45D88EA8, desc: INSERT_LEAF off 178, blkref #0:

rel 1663/16391/2662 blk 2

rmgr: Btree len (rec/tot): 64/ 64, tx: 122846, lsn:

0/45D88F68, prev 0/45D88F28, desc: INSERT_LEAF off 149, blkref #0:

rel 1663/16391/2663 blk 2

rmgr: Btree len (rec/tot): 64/ 64, tx: 122846, lsn:

0/45D88FA8, prev 0/45D88F68, desc: INSERT_LEAF off 256, blkref #0:

rel 1663/16391/3455 blk 4

rmgr: Heap len (rec/tot): 59/ 59, tx: 122846, lsn:

0/45D88FE8, prev 0/45D88FA8, desc: INSERT+INIT off 1 flags 0x00,

blkref #0: rel 1663/16391/24786 blk 0

rmgr: Standby len (rec/tot): 42/ 42, tx: 0, lsn:

0/45D89028, prev 0/45D88FE8, desc: LOCK xid 122846 db 16391 rel 16562

rmgr: Standby len (rec/tot): 54/ 54, tx: 0, lsn:

0/45D89058, prev 0/45D89028, desc: RUNNING_XACTS nextXid 122847

latestCompletedXid 122845 oldestRunningXid 122846; 1 xacts: 122846

rmgr: Transaction len (rec/tot): 114/ 114, tx: 122846, lsn:

0/45D89090, prev 0/45D89058, desc: COMMIT 2023−03−06 14:04:14.538399

MSK; rels: base/16391/24785; inval msgs: catcache 51 catcache 50

relcache 16562

Logical

Last but not least, the logical level enables logical decoding and logical replication.

It has to be activated on the publishing server.

If we take a look at ��� entries, we will see that this level is almost the same as

replica: it adds the entries related to replication sources and some arbitrary logical

entries that may be generated by applications. For the most part, logical decoding

depends on the information about active transactions (�������_�����) because it

requires capturing a snapshot to track system catalog changes.

226

Part III

Locks

12
Relation-Level Locks

12.1 About Locks

Locks control concurrent access to shared resources.

Concurrent access implies that several processes try to get one and the same re-

source at the same time. It makes no difference whether these processes are ex-

ecuted in parallel (if the hardware permits) or sequentially in the time-sharing

mode. If there is no concurrent access, there is no need to acquire locks (for exam-

ple, shared buffer cache requires locking, while local cache can do without it).

Before accessing a resource, the process must acquire a lock on it; when the oper-

ation is complete, this lock must be released for the resource to become available

to other processes. If locks are managed by the database system, the established

order of operations is maintained automatically; if locks are controlled by the ap-

plication, the protocol must be enforced by the application itself.

At a low level, a lock is simply a chunk of sharedmemory that defines the lock status

(whether it is acquired or not); it can also provide some additional information,

such as the process number or acquisition time.

As you can guess, a shared memory segment is a resource in its own right. Concurrent

access to such resources is regulated by synchronization primitives (such as semaphores or

mutexes) provided by the operating system. They guarantee strictly consecutive execution

of the code that accesses a shared resource. At the lowest level, these primitives are based

on atomic ��� instructions (such as test-and-set or compare-and-swap).

In general, we can use locks to protect any resource as long as it can be unambigu-

ously identified and assigned a particular lock address.

229

Chapter 12 Relation-Level Locks

For example, we can lock a database object, such as a table (identified by oid in the

system catalog), a data page (identified by a filename and a position within this

file), a row version (identified by a page and an offset within this page). We can also

lock a memory structure, such as a hash table or a buffer (identified by an assigned

��). We can even lock an abstract resource that has no physical representation.

But it is not always possible to acquire a lock at once: a resource can be already

locked by someone else. Then the process either joins the queue (if it is allowed

for this particular lock type) or tries again some time later. Either way, it has to

wait for the lock to be released.

I would like to single out two factors that can greatly affect locking efficiency.

Granularity, or the “grain size” of a lock. Granularity is important if resources form

a hierarchy.

For example, a table consists of pages, which, in their turn, consist of tu-

ples. All these objects can be protected by locks. Table-level locks are coarse-

grained; they forbid concurrent access even if the processes need to get to

different pages or rows.

Row-level locks are fine-grained, so they do not have this drawback; however,

the number of locks grows. To avoid using too much memory for lock-related

metadata, Postgre��� can apply various methods, one of them being lock es-

calation: if the number of fine-grained locks exceeds a certain threshold, they

are replaced by a single lock of coarser granularity.

A set of modes in which a lock can be acquired.

As a rule, only two modes are applied. The exclusive mode is incompatible

with all the other modes, including itself. The shared mode allows a resource

to be locked by several processes at a time. The shared mode can be used for

reading, while the exclusive mode is applied for writing.

In general, there may be other modes too. Names of modes are unimportant,

it is their compatibility matrix that matters.

Finer granularity and support for multiple compatible modes give more opportu-

nities for concurrent execution.

230

12.2 Heavyweight Locks

All locks can be classified by their duration.

Long-term locks are acquired for a potentially long time (inmost cases, till the end

of the transaction); they typically protect such resources as relations and rows.

These locks are usually managed by Postgre��� automatically, but a user still

has some control over this process.

Long-term locks offer multiple modes that enable various concurrent oper-

ations on data. They usually have extensive infrastructure (including such

features as wait queues, deadlock detection, and instrumentation) since its

maintenance is anyway much cheaper than operations on protected data.

Short-term locks are acquired for fractions of a second and rarely last longer than

several ��� instructions; they usually protect data structures in the shared

memory. Postgre��� manages such locks in a fully automated way.

Short-term locks typically offer very few modes and only basic infrastructure,

which may have no instrumentation at all.

Postgre��� supports various types of locks.1 Heavyweight locks (which are acquired

on relations and other objects) and row-level p. ���locks are considered long-term. Short-

term locks comprise various locks on memory structures p. ���. Besides, there is also a

distinct group of predicate locks p. ���, which, despite their name, are not locks at all.

12.2 Heavyweight Locks

Heavyweight locks are long-term ones. Acquired at the object level, they are mainly

used for relations, but can also be applied to some other types of objects. Heavy-

weight locks typically protect objects from concurrent updates or forbid their usage

during restructuring, but they can address other needs too. Such a vague definition

is deliberate: locks of this type are used for all kinds of purposes. The only thing

they have in common is their internal structure.

Unless explicitly specified otherwise, the term lock usually implies a heavyweight

lock.

1 backend/storage/lmgr/README

231

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/storage/lmgr/README;hb=REL_14_STABLE

Chapter 12 Relation-Level Locks

Heavyweight locks are located in the server’s sharedmemory1 and can be displayed

in the pg_locks view. Their total number is limited by the64 max_locks_per_transaction

value multiplied by100 max_connections.

All transactions use a common pool of locks, so one transaction can acquire more

thanmax_locks_per_transaction locks. What really matters is that the total number

of locks in the system does not exceed the defined limit. Since the pool is initial-

ized when the server is launched, changing any of these two parameters requires a

server restart.

If a resource is already locked in an incompatible mode, the process trying to ac-

quire another lock joins the queue. Waiting processes do not waste ��� time: they

fall asleep until the lock is released and the operating system wakes them up.

Two transactions can find themselves in a deadlockp. ��� if the first transaction is unable

to continue its operation until it gets a resource locked by the other transaction,

which, in its turn, needs a resource locked by the first transaction. This case is

rather simple; a deadlock can also involve more than two transactions. Since dead-

locks cause infinite waits, Postgre��� detects them automatically and aborts one

of the affected transactions to ensure that normal operation can continue.

Different types of heavyweight locks serve different purposes, protect different re-

sources, and support different modes, so we will consider them separately.

The following list provides the names of lock types as they appear in the locktype

column of the pg_locks view:

transactionid and virtualxid —a lockp. ��� on a transaction ��

relation —a relation-level lockp. ���

tuple —a lock acquired on a tuplep. ���

object —a lock on an objectp. ��� that is not a relation

extend —a relation extension lockp. ���

page —a page-level lockp. ��� used by some index types

advisory —an advisory lockp. ���

1 backend/storage/lmgr/lock.c

232

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/storage/lmgr/lock.c;hb=REL_14_STABLE

12.3 Locks on Transaction IDs

Almost all heavyweight locks are acquired automatically as needed and are re-

leased automatically when the corresponding transaction completes. There are

some exceptions though: for example, a relation-level lock can be set explicitly,

while advisory locks are always managed by users.

12.3 Locks on Transaction IDs

Each transaction always holds an exclusive lock on its own �� (both virtual p. ��and real,

if available).

Postgre��� offers two locking modes for this purpose, exclusive and shared. Their

compatibility matrix is very simple: the shared mode is compatible with itself,

while the exclusive mode cannot be combined with any mode.

Shared Exclusive

Shared ×

Exclusive × ×

To track completion of a particular transaction, a process can request a lock on

this transaction’s ��, in any mode. Since the transaction itself is already holding

an exclusive lock on its own ��, another lock is impossible to acquire. The process

requesting this lock joins the queue and falls asleep. Once the transaction com-

pletes, the lock is released, and the queued process wakes up. Clearly, it will not

manage to acquire the lock because the corresponding resource has already disap-

peared, but this lock is not what is actually needed anyway.

Let’s start a transaction in a separate session and get the process �� (���) of the

backend:

=> BEGIN;

=> SELECT pg_backend_pid();

pg_backend_pid

−−−−−−−−−−−−−−−−

28980

(1 row)

The started transaction holds an exclusive lock on its own virtual ��:

233

Chapter 12 Relation-Level Locks

=> SELECT locktype, virtualxid, mode, granted

FROM pg_locks WHERE pid = 28980;

locktype | virtualxid | mode | granted

−−−−−−−−−−−−+−−−−−−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−−−

virtualxid | 5/2 | ExclusiveLock | t

(1 row)

Here locktype is the type of the lock, virtualxid is the virtual transaction �� (which

identifies the locked resource), and mode is the locking mode (exclusive in this

case). The granted flag shows whether the requested lock has been acquired.

Once the transaction gets a real ��, the corresponding lock is added to this list:

=> SELECT pg_current_xact_id();

pg_current_xact_id

−−−−−−−−−−−−−−−−−−−−

122849

(1 row)

=> SELECT locktype, virtualxid, transactionid AS xid, mode, granted

FROM pg_locks WHERE pid = 28980;

locktype | virtualxid | xid | mode | granted

−−−−−−−−−−−−−−−+−−−−−−−−−−−−+−−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−−−

virtualxid | 5/2 | | ExclusiveLock | t

transactionid | | 122849 | ExclusiveLock | t

(2 rows)

Now this transaction holds exclusive locks on both its ��s.

12.4 Relation-Level Locks

Postgre��� provides as many as eight modes in which a relation (a table, an index,

or any other object) can be locked.1 Such a variety allows you to maximize the

number of concurrent commands that can be run on a relation.

The next page shows the compatibility matrix extended with examples of com-

mands that require the corresponding locking modes. There is no point in mem-

orizing all these modes or trying to find the logic behind their naming, but it is

1 postgresql.org/docs/14/explicit-locking#LOCKING-TABLES.html

234

https://postgresql.org/docs/14/explicit-locking#LOCKING-TABLES.html

12.4 Relation-Level Locks

definitely useful to look through this data, draw some general conclusions, and

refer to this table as required.

AS RS RE SUE S SRE E AE

Access Share × SELECT

Row Share × × SELECT FOR UPDATE/SHARE

Row Exclusive × × × × INSERT, UPDATE, DELETE

Share Update Exclusive × × × × × VACUUM, CREATE INDEX CONCURRENTLY

Share × × × × × CREATE INDEX

Share Row Exclusive × × × × × × CREATE TRIGGER

Exclusive × × × × × × × REFRESH MAT. VIEW CONCURRENTLY

Access Exclusive × × × × × × × × DROP, TRUNCATE, VACUUM FULL,

LOCK TABLE, REFRESH MAT. VIEW

The Access Share mode is the weakest one; it can be used with any other mode

except Access Exclusive, which is incompatible with all the modes. Thus, a ������

command can be run in parallel with almost any operation, but it does not let you

drop a table that is being queried.

The first four modes allow concurrent heap modifications, while the other four do

not. For example, the ������ ����� command uses the Share mode, which is com-

patible with itself (so you can create several indexes on a table concurrently) and

with the modes used by read-only operations. As a result, ������ commands can

run in parallel with index creation,while ������, ������, and ������ commands will

be blocked.

Conversely, unfinished transactions that modify heap data block the ������ �����

command. Instead, you can call ������ ����� ������������, which uses a weaker

Share Update Exclusivemode: it takes longer to create an index (and this operation

can even fail), but in return, concurrent data updates are allowed.

The ����� ����� command has multiple flavors that use different locking modes

(Share Update Exclusive, Share Row Exclusive, Access Exclusive). All of them are

described in the documentation.1

1 postgresql.org/docs/14/sql-altertable.html

235

https://postgresql.org/docs/14/sql-altertable.html

Chapter 12 Relation-Level Locks

Examples in this part of the book rely on the accounts table again:

=> TRUNCATE accounts;

=> INSERT INTO accounts(id, client, amount)

VALUES

(1, 'alice', 100.00),

(2, 'bob', 200.00),

(3, 'charlie', 300.00);

Wewill have to access the pg_locks table more than once, so let’s create a view that

shows all ��s in a single column, thus making the output more concise:

=> CREATE VIEW locks AS

SELECT pid,

locktype,

CASE locktype

WHEN 'relation' THEN relation::regclass::text

WHEN 'transactionid' THEN transactionid::text

WHEN 'virtualxid' THEN virtualxid

END AS lockid,

mode,

granted

FROM pg_locks

ORDER BY 1, 2, 3;

The transaction that is still running in the first session updates a row. This opera-

tion locks the accounts table and all its indexes, which results in two new locks of

the relation type acquired in the Row Exclusivemode:

=> UPDATE accounts SET amount = amount + 100.00 WHERE id = 1;

=> SELECT locktype, lockid, mode, granted

FROM locks WHERE pid = 28980;

locktype | lockid | mode | granted

−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−+−−−−−−−−−

relation | accounts | RowExclusiveLock | t

relation | accounts_pkey | RowExclusiveLock | t

transactionid | 122849 | ExclusiveLock | t

virtualxid | 5/2 | ExclusiveLock | t

(4 rows)

236

12.5 Wait Queue

12.5 Wait Queue

Heavyweight locks form a fair wait queue.1 Aprocess joins the queue if it attempts

to acquire a lock that is incompatible either with the current lock or with the locks

requested by other processes already in the queue.

While the first session is working on an update, let’s try to create an index on this

table in another session:

=> SELECT pg_backend_pid();

pg_backend_pid

−−−−−−−−−−−−−−−−

29459

(1 row)

=> CREATE INDEX ON accounts(client);

The command hangs, waiting for the resource to be released. The transaction tries

to lock the table in the Sharemode but cannot do it:

=> SELECT locktype, lockid, mode, granted

FROM locks WHERE pid = 29459;

locktype | lockid | mode | granted

−−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−−−

relation | accounts | ShareLock | f

virtualxid | 6/3 | ExclusiveLock | t

(2 rows)

Now let the third session start the ������ ���� command. It will also join the queue

because it requires the Access Exclusive mode, which conflicts with all the other

modes:

=> SELECT pg_backend_pid();

pg_backend_pid

−−−−−−−−−−−−−−−−

29662

(1 row)

=> VACUUM FULL accounts;

1 backend/storage/lmgr/lock.c, LockAcquire function

237

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/storage/lmgr/lock.c;hb=REL_14_STABLE

Chapter 12 Relation-Level Locks

=> SELECT locktype, lockid, mode, granted

FROM locks WHERE pid = 29662;

locktype | lockid | mode | granted

−−−−−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−

relation | accounts | AccessExclusiveLock | f

transactionid | 122853 | ExclusiveLock | t

virtualxid | 7/4 | ExclusiveLock | t

(3 rows)

All the subsequent contenders will now have to join the queue, regardless of their

locking mode. Even simple ������ queries will honestly follow ������ ����, al-

though they are compatible with the Row Exclusive lock held by the first session

performing the update.

=> SELECT pg_backend_pid();

pg_backend_pid

−−−−−−−−−−−−−−−−

29872

(1 row)

=> SELECT * FROM accounts;

=> SELECT locktype, lockid, mode, granted

FROM locks WHERE pid = 29872;

locktype | lockid | mode | granted

−−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−−−−−−−−+−−−−−−−−−

relation | accounts | AccessShareLock | f

virtualxid | 8/3 | ExclusiveLock | t

(2 rows)

T1

UPDATE

relationT2

CREATE INDEX
T3

VACUUM FULL
T4

SELECT

238

12.5 Wait Queue

The v. �.�pg_blocking_pids function gives a high-level overview of all waits. It shows

the ��s of all processes queued before the specified one that are already holding or

would like to acquire an incompatible lock:

=> SELECT pid,

pg_blocking_pids(pid),

wait_event_type,

state,

left(query,50) AS query

FROM pg_stat_activity

WHERE pid IN (28980,29459,29662,29872) \gx

−[RECORD 1]−−−−+−−−

pid | 28980

pg_blocking_pids | {}

wait_event_type | Client

state | idle in transaction

query | UPDATE accounts SET amount = amount + 100.00 WHERE

−[RECORD 2]−−−−+−−−

pid | 29459

pg_blocking_pids | {28980}

wait_event_type | Lock

state | active

query | CREATE INDEX ON accounts(client);

−[RECORD 3]−−−−+−−−

pid | 29662

pg_blocking_pids | {28980,29459}

wait_event_type | Lock

state | active

query | VACUUM FULL accounts;

−[RECORD 4]−−−−+−−−

pid | 29872

pg_blocking_pids | {29662}

wait_event_type | Lock

state | active

query | SELECT * FROM accounts;

To getmore details, you can review the information provided in the pg_locks table.1

Once the transaction is completed (either committed or aborted), all its locks are

released.2 The first process in the queue gets the requested lock and wakes up.

1 wiki.postgresql.org/wiki/Lock_dependency_information
2 backend/storage/lmgr/lock.c, LockReleaseAll & LockRelease functions

239

https://wiki.postgresql.org/wiki/Lock_dependency_information
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/storage/lmgr/lock.c;hb=REL_14_STABLE

Chapter 12 Relation-Level Locks

Here the transaction commit in the first session leads to sequential execution of

all the queued processes:

=> ROLLBACK;

ROLLBACK

CREATE INDEX

VACUUM

id | client | amount

−−−−+−−−−−−−−−+−−−−−−−−

1 | alice | 100.00

2 | bob | 200.00

3 | charlie | 300.00

(3 rows)

240

13
Row-Level Locks

13.1 Lock Design

Thanks to snapshot isolation, heap tuples do not have to be locked for reading.

However, two write transactions must not be allowed to modify one and the same

row at the same time. Rows must be locked in this case, but heavyweight locks are

not a very good choice for this purpose: each of them takes space in the server’s

shared memory (hundreds of bytes, not to mention all the supporting infrastruc-

ture), and Postgre��� internalmechanisms are not designed to handle a huge num-

ber of concurrent heavyweight locks.

Some database systems solve this problem by lock escalation: if row-level locks are

too many, they are replaced by a single lock of finer granularity (for example, by a

page-level or table-level lock). It simplifies the implementation, but can greatly

limit system throughput.

In Postgre���, the information on whether a particular row is locked is kept only

in the header of its current heap tuple. Row-level locks are virtually attributes in

heap pages rather than actual locks, and they are not reflected in ��� in any way.

A row is typically locked when it is being updated or deleted. p. ��In both cases, the

current version of the row is marked as deleted. The attribute used for this pur-

pose is the current transaction’s �� specified in the xmax field, and it is the same

�� (combined with additional hint bits) that indicates that the row is locked. If a

transaction wants to modify a row but sees an active transaction �� in the xmax

field of its current version, it has to wait for this transaction to complete. Once it

is over, all the locks are released, and the waiting transaction can proceed.

This mechanism allows locking as many rows as required at no extra cost.

241

Chapter 13 Row-Level Locks

The downside of this solution is that other processes cannot form a queue, as ���

contains no information about such locks. Therefore, heavyweight locks are still

required: a process waiting for a row to be released requests a lock on the �� of the

transaction currently busy with this row. Once the transaction completes, the row

becomes available again. Thus, the number of heavyweight locks is proportional

to the number of concurrent processes rather than rows being modified.

13.2 Row-Level Locking Modes

Row-level locks support four modes.1 Two of them implement exclusive locks that

can be acquired by only one transaction at a time, while the other two provide

shared locks that can be held by several transactions simultaneously.

Here is the compatibility matrix of these modes:

Key Share Share
No Key

Update
Update

Key Share ×

Share × ×

No Key Update × × ×

Update × × × ×

Exclusive Modes

The Update mode allows modifying any tuple fields and even deleting the whole

tuple, while the No Key Update mode permits only those changes that do not in-

volve any fields related to unique indexes (in other words, foreign keys must not

be affected).

The ������ command automatically chooses the weakest locking mode possible;

keys usually remain unchanged, so rows are typically locked in the No Key Update

mode.

1 postgresql.org/docs/14/explicit-locking#LOCKING-ROWS.html

242

https://postgresql.org/docs/14/explicit-locking#LOCKING-ROWS.html

13.2 Row-Level Locking Modes

Let’s create a function that uses pageinspect to display some tuple metadata that

we are interested in, namely the xmax field and several hint bits:

=> CREATE FUNCTION row_locks(relname text, pageno integer)

RETURNS TABLE(

ctid tid, xmax text,

lock_only text, is_multi text,

keys_upd text, keyshr text,

shr text

)

AS $$

SELECT (pageno,lp)::text::tid,

t_xmax,

CASE WHEN t_infomask & 128 = 128 THEN 't' END,

CASE WHEN t_infomask & 4096 = 4096 THEN 't' END,

CASE WHEN t_infomask2 & 8192 = 8192 THEN 't' END,

CASE WHEN t_infomask & 16 = 16 THEN 't' END,

CASE WHEN t_infomask & 16+64 = 16+64 THEN 't' END

FROM heap_page_items(get_raw_page(relname,pageno))

ORDER BY lp;

$$ LANGUAGE sql;

Now start a transaction on the accounts table to update the balance of the first

account (the key remains the same) and the �� of the second account (the key gets

updated):

=> BEGIN;

=> UPDATE accounts SET amount = amount + 100.00 WHERE id = 1;

=> UPDATE accounts SET id = 20 WHERE id = 2;

The page now contains the following metadata:

=> SELECT * FROM row_locks('accounts',0) LIMIT 2;

ctid | xmax | lock_only | is_multi | keys_upd | keyshr | shr

−−−−−−−+−−−−−−−−+−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−+−−−−−

(0,1) | 122858 | | | | |

(0,2) | 122858 | | | t | |

(2 rows)

The locking mode is defined by the keys_updated hint bit.

=> ROLLBACK;

243

Chapter 13 Row-Level Locks

The ������ ��� command uses the same xmax field as a locking attribute, but in

this case the xmax_lock_only hint bit must also be set. This bit indicates that the

tuple is locked but not deleted, which means that it is still current:

=> BEGIN;

=> SELECT * FROM accounts WHERE id = 1 FOR NO KEY UPDATE;

=> SELECT * FROM accounts WHERE id = 2 FOR UPDATE;

=> SELECT * FROM row_locks('accounts',0) LIMIT 2;

ctid | xmax | lock_only | is_multi | keys_upd | keyshr | shr

−−−−−−−+−−−−−−−−+−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−+−−−−−

(0,1) | 122859 | t | | | |

(0,2) | 122859 | t | | t | |

(2 rows)

=> ROLLBACK;

Shared Modes

The Share mode can be applied when a row needs to be read, but its modification

by another transaction must be forbidden. The Key Share mode allows updating

any tuple fields except key attributes.

Of all the shared modes, the Postgre��� core uses only Key Share, which is applied

when foreign keys are being checked. Since it is compatible with the No Key Update

exclusive mode, foreign key checks do not interfere with concurrent updates of

non-key attributes. As for applications, they can use any shared modes they like.

Let me stress once again that simple ������ commands never use row-level locks.

=> BEGIN;

=> SELECT * FROM accounts WHERE id = 1 FOR KEY SHARE;

=> SELECT * FROM accounts WHERE id = 2 FOR SHARE;

Here is what we see in the heap tuples:

=> SELECT * FROM row_locks('accounts',0) LIMIT 2;

ctid | xmax | lock_only | is_multi | keys_upd | keyshr | shr

−−−−−−−+−−−−−−−−+−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−+−−−−−

(0,1) | 122860 | t | | | t |

(0,2) | 122860 | t | | | t | t

(2 rows)

244

13.3 Multitransactions

The xmax_keyshr_lock bit is set for both operations, but you can recognize the Share

mode by other hint bits.1

13.3 Multitransactions

As we have seen, the locking attribute is represented by the xmax field, which is set

to the �� of the transaction that has acquired the lock. So how is this attribute set

for a shared lock held by several transactions at a time?

When dealing with shared locks, Postgre��� applies so-called multitransactions

(multixacts).2 Amultitransaction is a group of transactions that is assigned a sepa-

rate ��. Detailed information on group members and their locking modes is stored

in files under the ������/pg_multixact directory. For faster access, locked pages are

cached in the shared memory of the server;3 all changes are logged to ensure fault

tolerance.

Multixact ��s have the same ��-bit length as regular transaction ��s, but they are

issued independently. It means that transactions and multitransactions can po-

tentially have the same ��s. To differentiate between the two, Postgre��� uses an

additional hint bit: xmax_is_multi.

Let’s add one more exclusive lock acquired by another transaction (Key Share and

No Key Updatemodes are compatible):

=> BEGIN;

=> UPDATE accounts SET amount = amount + 100.00 WHERE id = 1;

=> SELECT * FROM row_locks('accounts',0) LIMIT 2;

ctid | xmax | lock_only | is_multi | keys_upd | keyshr | shr

−−−−−−−+−−−−−−−−+−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−+−−−−−

(0,1) | 1 | | t | | |

(0,2) | 122860 | t | | | t | t

(2 rows)

1 include/access/htup_details.h
2 backend/access/transam/multixact.c
3 backend/access/transam/slru.c

245

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/include/access/htup_details.h;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/transam/multixact.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/transam/slru.c;hb=REL_14_STABLE

Chapter 13 Row-Level Locks

The xmax_is_multi bit shows that the first row uses a multitransaction �� instead

of a regular one.

Without going into further implementation details, let’s display the information

on all the possible row-level locks using the pgrowlocks extension:

=> CREATE EXTENSION pgrowlocks;

=> SELECT * FROM pgrowlocks('accounts') \gx

−[RECORD 1]−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

locked_row | (0,1)

locker | 1

multi | t

xids | {122860,122861}

modes | {"Key Share","No Key Update"}

pids | {30423,30723}

−[RECORD 2]−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

locked_row | (0,2)

locker | 122860

multi | f

xids | {122860}

modes | {"For Share"}

pids | {30423}

It looks a lot like querying the pg_locks view, but the pgrowlocks function has to

access heap pages, as ��� contains no information on row-level locks.

=> COMMIT;

=> ROLLBACK;

Since multixact ��s are ��-bit, they are subject to wraparoundp. ��� because of counter

limits, just like regular transaction ��s. Therefore, Postgre��� has to process mul-

tixact ��s in a way similar to freezing: oldmultixact ��s are replaced with new ones

(or with a regular transaction �� if only one transaction is holding the lock by that

time).1

But while regular transaction ��s are frozen only in the xmin field (as a non-empty

xmax indicates that the tuple is outdated and will soon be removed), it is the xmax

field that has to be frozen for multitransactions: the current row version may be

repeatedly locked by new transactions in a shared mode.

1 backend/access/heap/heapam.c, FreezeMultiXactId function

246

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/heap/heapam.c;hb=REL_14_STABLE

13.4 Wait Queue

Freezing of multitransactions can be managed by server parameters, which are

similar to those provided for regular freezing: vacuum_multixact_freeze_min_age,

vacuum_multixact_freeze_table_age, autovacuum_multixact_freeze_max_age, as well

as vacuum_multixact_failsafe_age v. ��.

13.4 Wait Queue

Exclusive Modes

Since a row-level lock is just an attribute, the queue is arranged in a not-so-trivial

way. When a transaction is about to modify a row, it has to follow these steps:1

� If the xmax field and the hint bits indicate that the row is locked in an incom-

patible mode, acquire an exclusive heavyweight lock on the tuple that is being

modified.

� If necessary, wait until all the incompatible locks are released by requesting a

lock on the �� of the xmax transaction (or several transactions if xmax contains

a mutixact ��).

� Write its own �� into xmax in the tuple header and set the required hint bits.

� Release the tuple lock if it was acquired in the first step.

A tuple lock is yet another kind of heavyweight locks, which has the tuple type (not

to be confused with a regular row-level lock).

It may seem that steps � and � are redundant and it is enough to simply wait until

all the locking transactions are over. However, if several transactions are trying

to update one and the same row, all of them will be waiting on the transaction

currently processing this row. Once it completes, theywill find themselves in a race

condition for the right to lock the row, and some “unlucky” transactions may have

to wait for an indefinitely long time. Such a situation is called resource starvation.

A tuple lock identifies the first transaction in the queue and guarantees that it will

be the next one to get the lock.

1 backend/access/heap/README.tuplock

247

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/heap/README.tuplock;hb=REL_14_STABLE

Chapter 13 Row-Level Locks

But you can see it for yourself. Since Postgre��� acquires many different locks

during its operation, and each of them is reflected in a separate row in the pg_locks

table, I am going to create yet another view on top of pg_locks. It will show this

information in a more concise form, keeping only those locks that we are currently

interested in (the ones related to the accounts table and to the transaction itself,

except for any locks on virtual ��s):

=> CREATE VIEW locks_accounts AS

SELECT pid,

locktype,

CASE locktype

WHEN 'relation' THEN relation::regclass::text

WHEN 'transactionid' THEN transactionid::text

WHEN 'tuple' THEN relation::regclass||'('||page||','||tuple||')'

END AS lockid,

mode,

granted

FROM pg_locks

WHERE locktype in ('relation','transactionid','tuple')

AND (locktype != 'relation' OR relation = 'accounts'::regclass)

ORDER BY 1, 2, 3;

Let’s start the first transaction and update a row:

=> BEGIN;

=> SELECT txid_current(), pg_backend_pid();

txid_current | pg_backend_pid

−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−

122863 | 30723

(1 row)

=> UPDATE accounts SET amount = amount + 100.00 WHERE id = 1;

The transaction has completed all the four steps of theworkflowand is nowholding

a lock on the table:

=> SELECT * FROM locks_accounts WHERE pid = 30723;

pid | locktype | lockid | mode | granted

−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−−−−−−−−−+−−−−−−−−−

30723 | relation | accounts | RowExclusiveLock | t

30723 | transactionid | 122863 | ExclusiveLock | t

(2 rows)

Start the second transaction and try to update the same row. The transaction will

hang, waiting on a lock:

248

13.4 Wait Queue

=> BEGIN;

=> SELECT txid_current(), pg_backend_pid();

txid_current | pg_backend_pid

−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−

122864 | 30794

(1 row)

=> UPDATE accounts SET amount = amount + 100.00 WHERE id = 1;

T1

No Key Update

T2

tuple (0,1)

ctid xmin xmax data(0,1)
T1

The second transaction only gets as far as the second step. For this reason, apart

from locking the table and its own ��, it adds two more locks, which are also re-

flected in the pg_locks view: the tuple lock acquired at the first step and the lock of

the �� of the second transaction requested at the second step:

=> SELECT * FROM locks_accounts WHERE pid = 30794;

pid | locktype | lockid | mode | granted

−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−+−−−−−−−−−

30794 | relation | accounts | RowExclusiveLock | t

30794 | transactionid | 122863 | ShareLock | f

30794 | transactionid | 122864 | ExclusiveLock | t

30794 | tuple | accounts(0,1) | ExclusiveLock | t

(4 rows)

The third transaction will get stuck on the first step. It will try to acquire a lock on

the tuple and will stop at this point:

=> BEGIN;

=> SELECT txid_current(), pg_backend_pid();

txid_current | pg_backend_pid

−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−

122865 | 30865

(1 row)

=> UPDATE accounts SET amount = amount + 100.00 WHERE id = 1;

249

Chapter 13 Row-Level Locks

=> SELECT * FROM locks_accounts WHERE pid = 30865;

pid | locktype | lockid | mode | granted

−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−+−−−−−−−−−

30865 | relation | accounts | RowExclusiveLock | t

30865 | transactionid | 122865 | ExclusiveLock | t

30865 | tuple | accounts(0,1) | ExclusiveLock | f

(3 rows)

The fourth and all the subsequent transactions trying to update this row will not

differ from the third transaction in this respect: all of them will be waiting on the

same tuple lock.

=> BEGIN;

=> SELECT txid_current(), pg_backend_pid();

txid_current | pg_backend_pid

−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−

122866 | 30936

(1 row)

=> UPDATE accounts SET amount = amount + 100.00 WHERE id = 1;

=> SELECT * FROM locks_accounts WHERE pid = 30865;

pid | locktype | lockid | mode | granted

−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−+−−−−−−−−−

30865 | relation | accounts | RowExclusiveLock | t

30865 | transactionid | 122865 | ExclusiveLock | t

30865 | tuple | accounts(0,1) | ExclusiveLock | f

(3 rows)

T1

No Key Update

T2

tuple (0,1)T3

T4

ctid xmin xmax data(0,1)
T1

To get the full picture of the current waits, you can extend the pg_stat_activity view

with the information on locking processes:

250

13.4 Wait Queue

=> SELECT pid,

wait_event_type,

wait_event,

pg_blocking_pids(pid)

FROM pg_stat_activity

WHERE pid IN (30723,30794,30865,30936);

pid | wait_event_type | wait_event | pg_blocking_pids

−−−−−−−+−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−

30723 | Client | ClientRead | {}

30794 | Lock | transactionid | {30723}

30865 | Lock | tuple | {30794}

30936 | Lock | tuple | {30794,30865}

(4 rows)

If the first transaction is aborted, everything will work as expected: all the subse-

quent transactions will move one step further without jumping the queue.

And yet it is more likely that the first transaction will be committed. At the Repeat-

able Read or Serializable isolation levels, it would result in a serialization failure,

so the second transaction would have to be aborted1 (and all the subsequent trans-

actions in the queue would get aborted too). But at the Read Committed isolation

level the modified row will be re-read, and its update will be retried.

So, the first transaction is committed:

=> COMMIT;

The second transaction wakes up and successfully completes the third and the

fourth steps of the workflow:

UPDATE 1

=> SELECT * FROM locks_accounts WHERE pid = 30794;

pid | locktype | lockid | mode | granted

−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−−−−−−−−−+−−−−−−−−−

30794 | relation | accounts | RowExclusiveLock | t

30794 | transactionid | 122864 | ExclusiveLock | t

(2 rows)

As soon as the second transaction releases the tuple lock, the third one also wakes

up, but it sees that the xmax field of the new tuple contains a different �� already.

1 backend/executor/nodeModifyTable.c, ExecUpdate function

251

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/executor/nodeModifyTable.c;hb=REL_14_STABLE

Chapter 13 Row-Level Locks

At this point, the above workflow is over. At the Read Committed isolation level,

onemore attempt to lock the row is performed,1 but it does not follow the outlined

steps. The third transaction is nowwaiting for the second one to complete without

trying to acquire a tuple lock:

=> SELECT * FROM locks_accounts WHERE pid = 30865;

pid | locktype | lockid | mode | granted

−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−−−−−−−−−+−−−−−−−−−

30865 | relation | accounts | RowExclusiveLock | t

30865 | transactionid | 122864 | ShareLock | f

30865 | transactionid | 122865 | ExclusiveLock | t

(3 rows)

The fourth transaction does the same:

=> SELECT * FROM locks_accounts WHERE pid = 30936;

pid | locktype | lockid | mode | granted

−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−−−−−−−−−+−−−−−−−−−

30936 | relation | accounts | RowExclusiveLock | t

30936 | transactionid | 122864 | ShareLock | f

30936 | transactionid | 122866 | ExclusiveLock | t

(3 rows)

Now both the third and the fourth transactions are waiting for the second one to

complete, risking to get into a race condition. The queue has virtually fallen apart.

T2

No Key Update

T3
T4

ctid xmin xmax data(0,1)
T1

(0,2) T1 T2

If other transactions had joined the queue while it still existed, all of them would

have been dragged into this race.

1 backend/access/heap/heapam_handler.c, heapam_tuple_lock function

252

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/heap/heapam_handler.c;hb=REL_14_STABLE

13.4 Wait Queue

Conclusion: it is not a good idea to update one and the same table row in mul-

tiple concurrent processes. Under high load, this hotspot can quickly turn into a

bottleneck that causes performance issues.

Let’s commit all the started transactions.

=> COMMIT;

UPDATE 1

=> COMMIT;

UPDATE 1

=> COMMIT;

Shared Modes

Postgre��� acquires shared locks only for referential integrity checks. Using them

in a high-load application can lead to resource starvation, and a two-level locking

model cannot prevent such an outcome.

Let’s recall the steps a transaction should take to lock a row:

� If the xmax field and hint bits indicate that the row is locked in the exclusive

mode, acquire an exclusive heavyweight tuple lock.

� If required, wait for all the incompatible locks to be released by requesting a

lock on the �� of the xmax transaction (or several transactions if xmax contains

a multixact ��).

� Write its own �� into xmax in the tuple header and set the required hint bits.

� Release the tuple lock if it was acquired in the first step.

The first two steps imply that if the locking modes are compatible, the transaction

will jump the queue.

Let’s repeat our experiment from the very beginning.

=> TRUNCATE accounts;

253

Chapter 13 Row-Level Locks

=> INSERT INTO accounts(id, client, amount)

VALUES

(1,'alice',100.00),

(2,'bob',200.00),

(3,'charlie',300.00);

Start the first transaction:

=> BEGIN;

=> SELECT txid_current(), pg_backend_pid();

txid_current | pg_backend_pid

−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−

122869 | 30723

(1 row)

The row is now locked in a shared mode:

=> SELECT * FROM accounts WHERE id = 1 FOR SHARE;

The second transaction tries to update the same row, but it is not allowed: Share

and No Key Updatemodes are incompatible:

=> BEGIN;

=> SELECT txid_current(), pg_backend_pid();

txid_current | pg_backend_pid

−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−

122870 | 30794

(1 row)

=> UPDATE accounts SET amount = amount + 100.00 WHERE id = 1;

Waiting for the first transaction to complete, the second transaction is holding the

tuple lock, just like in the previous example:

=> SELECT * FROM locks_accounts WHERE pid = 30794;

pid | locktype | lockid | mode | granted

−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−+−−−−−−−−−

30794 | relation | accounts | RowExclusiveLock | t

30794 | transactionid | 122869 | ShareLock | f

30794 | transactionid | 122870 | ExclusiveLock | t

30794 | tuple | accounts(0,1) | ExclusiveLock | t

(4 rows)

254

13.4 Wait Queue

T1

Share

T2

tuple (0,1)

ctid xmin xmax data(0,1)
T1

Now let the third transaction lock the row in a shared mode. Such a lock is com-

patible with the already acquired lock, so this transaction jumps the queue:

=> BEGIN;

=> SELECT txid_current(), pg_backend_pid();

txid_current | pg_backend_pid

−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−

122871 | 30865

(1 row)

=> SELECT * FROM accounts WHERE id = 1 FOR SHARE;

We have got two transactions locking the same row:

=> SELECT * FROM pgrowlocks('accounts') \gx

−[RECORD 1]−−−−−−−−−−−−−−−

locked_row | (0,1)

locker | 2

multi | t

xids | {122869,122871}

modes | {Share,Share}

pids | {30723,30865}

T1
T3

Share

T2

tuple (0,1)

ctid xmin xmax data(0,1)
multi

255

Chapter 13 Row-Level Locks

If the first transaction completes at this point, the second one will wake up to see

that the row is still locked and will get back to the queue—but this time it will find

itself behind the third transaction:

=> COMMIT;

=> SELECT * FROM locks_accounts WHERE pid = 30794;

pid | locktype | lockid | mode | granted

−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−+−−−−−−−−−

30794 | relation | accounts | RowExclusiveLock | t

30794 | transactionid | 122870 | ExclusiveLock | t

30794 | transactionid | 122871 | ShareLock | f

30794 | tuple | accounts(0,1) | ExclusiveLock | t

(4 rows)

And only when the third transaction completes will the second one be able to per-

form an update (unless other shared locks appear within this time interval).

=> COMMIT;

UPDATE 1

=> COMMIT;

Foreign key checks are unlikely to cause any issues, as key attributes usually remain

unchanged and Key Share can be used together with No Key Update. But in most

cases, you should avoid shared row-level locks in applications.

13.5 No-Wait Locks

S�� commands usually wait for the requested resources to be freed. But sometimes

it makes sense to cancel the operation if the lock cannot be acquired immediately.

For this purpose, commands like ������, ����, and ����� offer the ������ clause.

Let’s lock a row:

=> BEGIN;

=> UPDATE accounts SET amount = amount + 100.00 WHERE id = 1;

256

13.5 No-Wait Locks

The command with the ������ clause immediately completes with an error if the

requested resource is locked:

=> SELECT * FROM accounts

FOR UPDATE NOWAIT;

ERROR: could not obtain lock on row in relation "accounts"

Such an error can be captured and handled by the application code.

The ������ and ������ commands do not have the ������ clause. Instead, you can

try to lock the row using the ������ ��� ������ ������ command and then update

or delete it if the attempt is successful.

In some rare cases, it may be convenient to skip the already locked rows and start

processing the available ones right away. This is exactly what ������ ��� does when

run with the ���� ������ clause:

=> SELECT * FROM accounts

ORDER BY id

FOR UPDATE SKIP LOCKED

LIMIT 1;

id | client | amount

−−−−+−−−−−−−−+−−−−−−−−

2 | bob | 200.00

(1 row)

In this example, the first (already locked) row was skipped, and the query locked

and returned the second row.

This approach enables us to process rows in batches p. ���or set up parallel processing of

event queues. However, avoid inventing other use cases for this command—most

tasks can be addressed using much simpler methods.

Last but not least, you can avoid long waits by setting a timeout:

=> SET lock_timeout = '1s';

=> ALTER TABLE accounts DROP COLUMN amount;

ERROR: canceling statement due to lock timeout

The command completes with an error because it has failed to acquire a lock within

one second. A timeout can be set not only at the session level, but also at lower

levels, for example, for a particular transaction.

257

Chapter 13 Row-Level Locks

This method prevents long waits during table processing when the command re-

quiring an exclusive lock is executed under load. If an error occurs, this command

can be retried after a while.

While statement_timeout limits the total time of operator execution, the lock_timeout pa-

rameter defines the maximum time that can be spent waiting on a lock.

=> ROLLBACK;

13.6 Deadlocks

A transaction may sometimes require a resource that is currently being used by

another transaction, which, in its turn, may be waiting on a resource locked by

the third transaction, and so on. Such transactions get queued using heavyweight

locks.

But occasionally a transaction already in the queuemay need yet another resource,

so it has to join the same queue again and wait for this resource to be released.

A deadlock1 occurs: the queue now has a circular dependency that cannot resolve

on its own.

For better visualization, let’s draw a wait-for graph. Its nodes represent active pro-

cesses, while the edges shown as arrows point from the processes waiting on locks

to the processes holding these locks. If the graph has a cycle, that is, a node can

reach itself following the arrows, it means that a deadlock has occurred.

The illustrations here show transactions rather than processes. This substitution is usually

acceptable because one transaction is executed by one process, and locks can only be

acquired within a transaction. But in general, it is more correct to talk about processes, as

some locks may not be released right away when the transaction is complete.

If a deadlock has occurred, and none of its participants has set a timeout, transac-

tions will be waiting on each other forever. That’s why the lock manager2 performs

automatic deadlock detection.

However, this check requires some effort, which should not be wasted each time a

lock is requested (after all, deadlocks do not happen too often). So if the process

1 postgresql.org/docs/14/explicit-locking#LOCKING-DEADLOCKS.html
2 backend/storage/lmgr/README

258

https://postgresql.org/docs/14/explicit-locking#LOCKING-DEADLOCKS.html
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/storage/lmgr/README;hb=REL_14_STABLE

13.6 Deadlocks

T1

resource 1

T2

resource 2

T3

resource 3

makes an unsuccessful attempt to acquire a lock and falls asleep after joining the

queue, Postgre��� automatically sets a timeout as defined by the 1sdeadlock_timeout

parameter.1 If the resource becomes available earlier—great, then the extra cost

of the check will be avoided. But if the wait continues after the deadlock_timeout

units of time, the waiting process wakes up and initiates the check.2

This check effectively consists in building a wait-for graph and searching it for cy-

cles.3 To “freeze” the current state of the graph, Postgre��� stops any processing

of heavyweight locks for the whole duration of the check.

If no deadlocks are detected, the process falls asleep again; sooner or later its turn

will come.

If a deadlock is detected, one of the transactions will be forced to terminate, thus

releasing its locks and enabling other transactions to continue their execution. In

most cases, it is the transaction initiating the check that gets interrupted, but if

the cycle includes an autovacuum process that is not currently freezing tuples to

prevent wraparound, the server terminates autovacuum as having lower priority.

Deadlocks usually indicate bad application design. To discover such situations, you

have two things to watch out for: the correspondingmessages in the server log and

an increasing deadlocks value in the pg_stat_database table.

1 backend/storage/lmgr/proc.c, ProcSleep function
2 backend/storage/lmgr/proc.c, CheckDeadLock function
3 backend/storage/lmgr/deadlock.c

259

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/storage/lmgr/proc.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/storage/lmgr/proc.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/storage/lmgr/deadlock.c;hb=REL_14_STABLE

Chapter 13 Row-Level Locks

Deadlocks by Row Updates

Although deadlocks are ultimately caused by heavyweight locks, it is mostly row-

level locks acquired in different order that lead to them.

Suppose a transaction is going to transfer $��� between two accounts. It starts by

drawing this sum from the first account:

=> BEGIN;

=> UPDATE accounts SET amount = amount - 100.00 WHERE id = 1;

UPDATE 1

At the same time, another transaction is going to transfer $�� from the second

account to the first one. It begins by drawing this sum from the second account:

=> BEGIN;

=> UPDATE accounts SET amount = amount - 10.00 WHERE id = 2;

UPDATE 1

Now the first transaction attempts to increase the amount in the second account

but sees that the corresponding row is locked:

=> UPDATE accounts SET amount = amount + 100.00 WHERE id = 2;

Then the second transaction tries to update the first account but also gets locked:

=> UPDATE accounts SET amount = amount + 10.00 WHERE id = 1;

This circular wait will never resolve on its own. Unable to obtain the resource

within one second, the first transaction initiates a deadlock check and gets aborted

by the server:

ERROR: deadlock detected

DETAIL: Process 30423 waits for ShareLock on transaction 122877;

blocked by process 30723.

Process 30723 waits for ShareLock on transaction 122876; blocked by

process 30423.

HINT: See server log for query details.

CONTEXT: while updating tuple (0,2) in relation "accounts"

Now the second transaction can continue. It wakes up and performs an update:

260

13.6 Deadlocks

UPDATE 1

Let’s complete the transactions.

=> ROLLBACK;

=> ROLLBACK;

The right way to perform such operations is to lock resources in the same order. For

example, in this particular case the accounts could have been locked in ascending

order based on their numbers.

Deadlocks Between Two UPDATE Statements

In some cases deadlocks seem impossible, and yet they do occur.

We usually assume that ��� commands are atomic, but are they really? Let’s take

a closer look at ������: this command locks rows as they are being updated rather

than all at once, and it does not happen simultaneously. So if one ������ command

modifies several rows in one order while the other is doing the same in a different

order, a deadlock can occur.

Let’s reproduce this scenario. First, we are going to build an index on the amount

column, in descending order:

=> CREATE INDEX ON accounts(amount DESC);

To be able to observe the process, we can write a function that slows things down:

=> CREATE FUNCTION inc_slow(n numeric)

RETURNS numeric

AS $$

SELECT pg_sleep(1);

SELECT n + 100.00;

$$ LANGUAGE sql;

The first ������ command is going to update all the tuples. The execution plan

relies on a sequential scan of the whole table.

261

Chapter 13 Row-Level Locks

=> EXPLAIN (costs off)

UPDATE accounts SET amount = inc_slow(amount);

QUERY PLAN

−−−−−−−−−−−−−−−−−−−−−−−−−−−

Update on accounts

−> Seq Scan on accounts

(2 rows)

To make sure that the heap page stores the rows in ascending order based on the

amount column, we have to truncate the table and insert the rows anew:

=> TRUNCATE accounts;

=> INSERT INTO accounts(id, client, amount)

VALUES

(1,'alice',100.00),

(2,'bob',200.00),

(3,'charlie',300.00);

=> ANALYZE accounts;

=> SELECT ctid, * FROM accounts;

ctid | id | client | amount

−−−−−−−+−−−−+−−−−−−−−−+−−−−−−−−

(0,1) | 1 | alice | 100.00

(0,2) | 2 | bob | 200.00

(0,3) | 3 | charlie | 300.00

(3 rows)

The sequential scan will update the rows in the same order (it is not always true

for large tablesp. ��� though).

Let’s start the update:

=> UPDATE accounts SET amount = inc_slow(amount);

Meanwhile, we are going to forbid sequential scans in another session:

=> SET enable_seqscan = off;

As a result, the planner chooses an index scan for the next ������ command.

=> EXPLAIN (costs off)

UPDATE accounts SET amount = inc_slow(amount)

WHERE amount > 100.00;

262

13.6 Deadlocks

QUERY PLAN

−−−

Update on accounts

−> Index Scan using accounts_amount_idx on accounts

Index Cond: (amount > 100.00)

(3 rows)

The second and third rows satisfy the condition; since the index is descending, the

rows will get updated in the reverse order.

Let’s start the next update:

=> UPDATE accounts SET amount = inc_slow(amount)

WHERE amount > 100.00;

The pgrowlocks extension shows that the first operator has already updated the

first row (�,�), while the second one has managed to update the last row (�,�):

=> SELECT locked_row, locker, modes FROM pgrowlocks('accounts');

locked_row | locker | modes

−−−−−−−−−−−−+−−−−−−−−+−−−−−−−−−−−−−−−−−−−

(0,1) | 122883 | {"No Key Update"}

(0,3) | 122884 | {"No Key Update"}

(2 rows)

first
second

Another second passes. The first operator has updated the second row, and the

other one would like to do it too, but it is not allowed.

=> SELECT locked_row, locker, modes FROM pgrowlocks('accounts');

locked_row | locker | modes

−−−−−−−−−−−−+−−−−−−−−+−−−−−−−−−−−−−−−−−−−

(0,1) | 122883 | {"No Key Update"}

(0,2) | 122883 | {"No Key Update"}

(0,3) | 122884 | {"No Key Update"}

(3 rows)

the first one wins

Now the first operator would like to update the last table row, but it is already

locked by the second operator. A deadlock has occurred.

One of the transactions is aborted:

263

Chapter 13 Row-Level Locks

ERROR: deadlock detected

DETAIL: Process 30794 waits for ShareLock on transaction 122883;

blocked by process 30723.

Process 30723 waits for ShareLock on transaction 122884; blocked by

process 30794.

HINT: See server log for query details.

CONTEXT: while updating tuple (0,2) in relation "accounts"

And the other completes its execution:

UPDATE 3

Although such situations seem impossible, they do occur in high-load systems

when batch row updates are performed.

264

14
Miscellaneous Locks

14.1 Non-Object Locks

To lock a resource that is not considered a relation, Postgre��� uses heavyweight

locks of the object type.1 You can lock almost anything that is stored in the sys-

tem catalog: tablespaces, subscriptions, schemas, roles, policies, enumerated data

types, and so on.

Let’s start a transaction that creates a table:

=> BEGIN;

=> CREATE TABLE example(n integer);

Now take a look at non-relation locks in the pg_locks table:

=> SELECT database,

(

SELECT datname FROM pg_database WHERE oid = database

) AS dbname,

classid,

(

SELECT relname FROM pg_class WHERE oid = classid

) AS classname,

objid,

mode,

granted

FROM pg_locks

WHERE locktype = 'object'

AND pid = pg_backend_pid() \gx

1 backend/storage/lmgr/lmgr.c, LockDatabaseObject & LockSharedObject functions

265

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/storage/lmgr/lmgr.c;hb=REL_14_STABLE

Chapter 14 Miscellaneous Locks

−[RECORD 1]−−−−−−−−−−−−−−

database | 16391

dbname | internals

classid | 2615

classname | pg_namespace

objid | 2200

mode | AccessShareLock

granted | t

The locked resource is defined here by three values:

database — the oid of the database that contains the object being locked (or zero

if this object is common to the whole cluster)

classid — the oid listed in pg_class that corresponds to the name of the system

catalog table defining the type of the resource

objid — the oid listed in the system catalog table referenced by classid

The database value points to the internals database; it is the database to which the

current session is connected. The classid column points to the pg_namespace table,

which lists schemas.

Now we can decipher the objid:

=> SELECT nspname FROM pg_namespace WHERE oid = 2200;

nspname

−−−−−−−−−

public

(1 row)

Thus, Postgre��� has locked the public schema tomake sure that no one can delete

it while the transaction is still running.

Similarly, object deletion requires exclusive locks on both the object itself and all

the resources it depends on.1

=> ROLLBACK;

1 backend/catalog/dependency.c, performDeletion function

266

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/catalog/dependency.c;hb=REL_14_STABLE

14.2 Relation Extension Locks

14.2 Relation Extension Locks

As the number of tuples in a relation grows, Postgre��� inserts new tuples into free

space in the already available pages whenever possible. But it is clear that at some

point it will have to add new pages, that is, to extend the relation. In terms of the

physical layout, new pages get added to the end of the corresponding file (which,

in turn, can lead to creation of a new file).

For new pages to be added by only one process at a time, this operation is protected

by a special heavyweight lock of the extend type.1 Such a lock is also used by index

vacuuming to forbid adding new pages during an index scan.

Relation extension locks behave a bit differently from what we have seen so far:

• They are released as soon as the extension is created, without waiting for the

transaction to complete.

• They cannot cause a deadlock, so they are not included into the wait-for graph.

However, a deadlock check will still be performed if the procedure of extending a relation

is taking longer than deadlock_timeout. It is not a typical situation, but it can happen if a

large number of processes performmultiple insertions concurrently. In this case, the check

can be called multiple times, virtually paralyzing normal system operation.

To minimize this risk, heap files v. �.�are extended by several pages at once (in proportion to the

number of processes awaiting the lock, but by not more than ��� pages per operation).2

An exception to this rule is �-tree index files, which are extended by one page at a time.3

14.3 Page Locks

Apage-level heavyweight lock of the page type4 is applied only by ��� indexes, and

only in the following case.

1 backend/storage/lmgr/lmgr.c, LockRelationForExtension function
2 backend/access/heap/hio.c, RelationAddExtraBlocks function
3 backend/access/nbtree/nbtpage.c, _bt_getbuf function
4 backend/storage/lmgr/lmgr.c, LockPage function

267

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/storage/lmgr/lmgr.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/heap/hio.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/nbtree/nbtpage.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/storage/lmgr/lmgr.c;hb=REL_14_STABLE

Chapter 14 Miscellaneous Locks

G�� indexes can speed up search of elements in compound values, such as words in

text documents. They can be roughly described as �-trees that store separatewords

rather than the whole documents. When a new document is added, the index has

to be thoroughly updated to include each word that appears in this document.

To improve performance, ��� indexes allow deferred insertion, which is controlled

by theon fastupdate storage parameter. New words are first quickly added into an

unordered pending list, and after a while all the accumulated entries aremoved into

themain index structure. Since different documents are likely to contain duplicate

words, this approach proves to be quite cost-effective.

To avoid concurrent transfer of words by several processes, the index metapage is

locked in the exclusive mode until all the words are moved from the pending list

to the main index. This lock does not interfere with regular index usage.

Just like relation extension locks, page locks are released immediately when the

task is complete,withoutwaiting for the end of the transaction, so they never cause

deadlocks.

14.4 Advisory Locks

Unlike other heavyweight locks (such as relation locks), advisory locks1 are never

acquired automatically: they are controlled by the application developer. These

locks are convenient to use if the application requires dedicated locking logic for

some particular purpose.

Supposewe need to lock a resource that does not correspond to any database object

(which we could lock using ������ ��� or ���� ����� commands). In this case, the

resource needs to be assigned a numeric ��. If the resource has a unique name, the

easiest way to do it is to generate a hash code for this name:

=> SELECT hashtext('resource1');

hashtext

−−−−−−−−−−−

991601810

(1 row)

1 postgresql.org/docs/14/explicit-locking#ADVISORY-LOCKS.html

268

https://postgresql.org/docs/14/explicit-locking#ADVISORY-LOCKS.html

14.4 Advisory Locks

Postgre��� provides a whole class of functions formanaging advisory locks.1 Their

names begin with the pg_advisory prefix and can contain the following words that

hint at the function purpose:

lock —acquire a lock

try —acquire a lock if it can be done without waits

unlock — release the lock

share —use a shared locking mode (by default, the exclusive mode is used)

xact — acquire and hold a lock till the end of the transaction (by default, the lock

is held till the end of the session)

Let’s acquire an exclusive lock until the end of the session:

=> BEGIN;

=> SELECT pg_advisory_lock(hashtext('resource1'));

=> SELECT locktype, objid, mode, granted

FROM pg_locks WHERE locktype = 'advisory' AND pid = pg_backend_pid();

locktype | objid | mode | granted

−−−−−−−−−−+−−−−−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−−−

advisory | 991601810 | ExclusiveLock | t

(1 row)

For advisory locks to actually work, other processes must also observe the estab-

lished order when accessing the resource; it must be guaranteed by the application.

The acquired lock will be held even after the transaction is complete:

=> COMMIT;

=> SELECT locktype, objid, mode, granted

FROM pg_locks WHERE locktype = 'advisory' AND pid = pg_backend_pid();

locktype | objid | mode | granted

−−−−−−−−−−+−−−−−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−−−

advisory | 991601810 | ExclusiveLock | t

(1 row)

Once the operation on the resource is over, the lock has to be explicitly released:

=> SELECT pg_advisory_unlock(hashtext('resource1'));

1 postgresql.org/docs/14/functions-admin#FUNCTIONS-ADVISORY-LOCKS.html

269

https://postgresql.org/docs/14/functions-admin#FUNCTIONS-ADVISORY-LOCKS.html

Chapter 14 Miscellaneous Locks

14.5 Predicate Locks

The term predicate lock appeared as early as the first attempts to implement full

isolation based on locks.1 The problem confronted at that time was that locking

all the rows to be read and updated still could not guarantee full isolation. Indeed,

if new rows that satisfy the filter condition get inserted into the table, they will

become phantoms.p. ��

For this reason, it was suggested to lock conditions (predicates) rather than rows.

If you run a query with the a > 10 predicate, locking this predicate will not allow

adding new rows into the table if they satisfy this condition, so phantoms will be

avoided. The trouble is that if a query with a different predicate appears, such

as a < 20, you have to find out whether these predicates overlap. In theory, this

problem is algorithmically unsolvable; in practice, it can be solved only for a very

simple class of predicates (like in this example).

In Postgre���, the Serializable isolation level is implemented in a different way:

it uses the Serializable Snapshot Isolation (���) protocol.2 The term predicate lock

still remains, but its sense has radically changed. In fact, such “locks” do not lock

anything: they are used to track data dependencies between different transactions.

It is proved thatp. �� snapshot isolation at the Repeatable Read level allows no anoma-

lies except for the write skew and the read-only transaction anomaly. These two

anomalies result in certain patterns in the data dependence graph that can be dis-

covered at a relatively low cost.

The problem is that we must differentiate between two types of dependencies:

• Thefirst transaction reads a row that is later updated by the second transaction

(�� dependency).

• The first transactionmodifies a row that is later read by the second transaction

(�� dependency).

1 K. P. Eswaran, J. N. Gray, R. A. Lorie, I. L. Traiger. The notions of consistency and predicate locks in a

database system
2 backend/storage/lmgr/README-SSI

backend/storage/lmgr/predicate.c

270

https://jimgray.azurewebsites.net/papers/on%20the%20notions%20of%20consistency%20and%20predicate%20locks%20in%20a%20database%20system%20cacm.pdf
https://jimgray.azurewebsites.net/papers/on%20the%20notions%20of%20consistency%20and%20predicate%20locks%20in%20a%20database%20system%20cacm.pdf
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/storage/lmgr/README-SSI;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/storage/lmgr/predicate.c;hb=REL_14_STABLE

14.5 Predicate Locks

W� dependencies can be detected using regular locks, but �� dependencies have

to be tracked via predicate locks. Such tracking is turned on automatically at the

Serializable isolation level, and that’s exactly why it is important to use this level

for all transactions (or at least all the interconnected ones). If any transaction is

running at a different level, it will not set (or check) predicate locks, so the Serial-

izable level will be downgraded to Repeatable Read.

I would like to stress once again that despite their name, predicate locks do not lock

anything. Instead, a transaction is checked for “dangerous” dependencies when it

is about to be committed, and if Postgre��� suspects an anomaly, this transaction

will be aborted.

Let’s create a table with an index that will span several pages (it can be achieved

by using a low fillfactor value):

=> CREATE TABLE pred(n numeric, s text);

=> INSERT INTO pred(n) SELECT n FROM generate_series(1,10000) n;

=> CREATE INDEX ON pred(n) WITH (fillfactor = 10);

=> ANALYZE pred;

If the query performs a sequential scan, a predicate lock is acquired on the whole

table (even if some of the rows do not satisfy the provided filter conditions).

=> SELECT pg_backend_pid();

pg_backend_pid

−−−−−−−−−−−−−−−−

34753

(1 row)

=> BEGIN ISOLATION LEVEL SERIALIZABLE;

=> EXPLAIN (analyze, costs off, timing off, summary off)

SELECT * FROM pred WHERE n > 100;

QUERY PLAN

−−−

Seq Scan on pred (actual rows=9900 loops=1)

Filter: (n > '100'::numeric)

Rows Removed by Filter: 100

(3 rows)

271

Chapter 14 Miscellaneous Locks

Although predicate locks have their own infrastructure, the pg_locks view displays

them together with heavyweight locks. All predicate locks are always acquired in

the SIReadmode, which stands for Serializable Isolation Read:

=> SELECT relation::regclass, locktype, page, tuple

FROM pg_locks WHERE mode = 'SIReadLock' AND pid = 34753

ORDER BY 1, 2, 3, 4;

relation | locktype | page | tuple

−−−−−−−−−−+−−−−−−−−−−+−−−−−−+−−−−−−−

pred | relation | |

(1 row)

=> ROLLBACK;

Note that predicate locks may be held longer than the transaction duration, as

they are used to track dependencies between transactions. But anyway, they are

managed automatically.

If the query performs an index scan, the situation improves. For a �-tree index, it

is enough to set a predicate lock on the read heap tuples and on the scanned leaf

pages of the index. It will “lock” the whole range that has been read, not only the

exact values.

=> BEGIN ISOLATION LEVEL SERIALIZABLE;

=> EXPLAIN (analyze, costs off, timing off, summary off)

SELECT * FROM pred WHERE n BETWEEN 1000 AND 1001;

QUERY PLAN

−−−

Index Scan using pred_n_idx on pred (actual rows=2 loops=1)

Index Cond: ((n >= '1000'::numeric) AND (n <= '1001'::numeric))

(2 rows)

=> SELECT relation::regclass, locktype, page, tuple

FROM pg_locks WHERE mode = 'SIReadLock' AND pid = 34753

ORDER BY 1, 2, 3, 4;

relation | locktype | page | tuple

−−−−−−−−−−−−+−−−−−−−−−−+−−−−−−+−−−−−−−

pred | tuple | 4 | 96

pred | tuple | 4 | 97

pred_n_idx | page | 28 |

(3 rows)

272

14.5 Predicate Locks

The number of leaf pages corresponding to the already scanned tuples can change:

for example, an index page can be split when new rows get inserted into the table.

However, Postgre��� takes it into account and locks newly appeared pages too:

=> INSERT INTO pred

SELECT 1000+(n/1000.0) FROM generate_series(1,999) n;

=> SELECT relation::regclass, locktype, page, tuple

FROM pg_locks WHERE mode = 'SIReadLock' AND pid = 34753

ORDER BY 1, 2, 3, 4;

relation | locktype | page | tuple

−−−−−−−−−−−−+−−−−−−−−−−+−−−−−−+−−−−−−−

pred | tuple | 4 | 96

pred | tuple | 4 | 97

pred_n_idx | page | 28 |

pred_n_idx | page | 266 |

pred_n_idx | page | 267 |

pred_n_idx | page | 268 |

pred_n_idx | page | 269 |

(7 rows)

Each read tuple is locked separately, and there may be quite a few of such tuples.

Predicate locks use their own pool allocated at the server start. The total number

of predicate locks is limited by the 64max_pred_locks_per_transaction valuemultiplied

by 100max_connections (despite the parameter names, predicate locks are not being

counted per separate transactions).

Here we get the same problem as with row-level locks, but it is solved in a different

way: lock escalation is applied.1

As soon as the number of tuple locks related to one page exceeds v. ��the value of the

2max_pred_locks_per_page parameter, they are replaced by a single page-level lock.

=> EXPLAIN (analyze, costs off, timing off, summary off)

SELECT * FROM pred WHERE n BETWEEN 1000 AND 1002;

QUERY PLAN

−−−

Index Scan using pred_n_idx on pred (actual rows=3 loops=1)

Index Cond: ((n >= '1000'::numeric) AND (n <= '1002'::numeric))

(2 rows)

1 backend/storage/lmgr/predicate.c, PredicateLockAcquire function

273

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/storage/lmgr/predicate.c;hb=REL_14_STABLE

Chapter 14 Miscellaneous Locks

Instead of three locks of the tuple type we now have one lock of the page type:

=> SELECT relation::regclass, locktype, page, tuple

FROM pg_locks WHERE mode = 'SIReadLock' AND pid = 34753

ORDER BY 1, 2, 3, 4;

relation | locktype | page | tuple

−−−−−−−−−−−−+−−−−−−−−−−+−−−−−−+−−−−−−−

pred | page | 4 |

pred_n_idx | page | 28 |

pred_n_idx | page | 266 |

pred_n_idx | page | 267 |

pred_n_idx | page | 268 |

pred_n_idx | page | 269 |

(6 rows)

=> ROLLBACK;

Escalation of page-level locks follows the same principlev. �� . If the number of such

locks for a particular relation exceeds the−2 max_pred_locks_per_relation value, they

get replaced by a single relation-level lock. (If this parameter is set to a negative

value, the threshold is calculated as64 max_pred_locks_per_transaction divided by the

absolute value of max_pred_locks_per_relation; thus, the default threshold is ��).

Lock escalation is sure to lead to multiple false-positive serialization errors, which

negatively affects system throughput. So you have to find an appropriate balance

between performance and spending the available ��� on locks.

Predicate locks support the following index types:

• �-trees

• hash indexes, �i��, and ���v. ��

If an index scan is performed, but the index does not support predicate locks, the

whole indexwill be locked. It is only to be expected that the number of transactions

aborted for no good reason will also increase in this case.

For more efficient operation at the Serializable level, it makes sense to explicitly

declare read-only transactions as such using the ���� ���� clause. If the lock man-

ager sees that a read-only transaction will not conflict with other transactions,1 it

1 backend/storage/lmgr/predicate.c, SxactIsROSafe macro

274

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/storage/lmgr/predicate.c;hb=REL_14_STABLE

14.5 Predicate Locks

can release the already set predicate locks and refrain from acquiring new ones.

And if such a transaction is also declared ����������, the read-only transaction p. ��

anomaly will be avoided too.

275

15
Locks on Memory Structures

15.1 Spinlocks

To protect data structures in shared memory, Postgre��� uses several types of

lighter and less expensive locks rather than regular heavyweight ones.

The simplest locks are spinlocks. They are usually acquired for a very short time

interval (no longer than several ��� cycles) to protect particularmemory cells from

concurrent updates.

Spinlocks are based on atomic ��� instructions, such as compare-and-swap.1 They

only support the exclusive lockingmode. If the required resource is already locked,

the process busy-waits, repeating the command (it “spins” in the loop, hence the

name). If the lock cannot be acquiredwithin the specified time interval, the process

pauses for a while and then starts another loop.

This strategy makes sense if the probability of a conflict is estimated as very low,

so after an unsuccessful attempt the lock is likely to be acquired within several

instructions.

Spinlocks haveneither deadlock detectionnor instrumentation. From the practical

standpoint, we should simply know about their existence; the whole responsibility

for their correct implementation lies with Postgre��� developers.

1 backend/storage/lmgr/s_lock.c

276

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/storage/lmgr/s_lock.c;hb=REL_14_STABLE

15.2 Lightweight Locks

15.2 Lightweight Locks

Next, there are so-called lightweight locks, or lwlocks.1 Acquired for the time

needed to process a data structure (for example, a hash table or a list of pointers),

lightweight locks are typically short; however, they can take longer when used to

protect �/� operations.

Lightweight locks support twomodes: exclusive (for datamodification) and shared

(for read-only operations). There is no queue as such: if several processes are wait-

ing on a lock, one of them will get access to the resource in a more or less random

fashion. In high-load systems with multiple concurrent processes, it can lead to

some unpleasant effects.

Deadlock checks are not provided; we have to trust Postgre��� developers that

lightweight locks are implemented correctly. However, these locks do have instru-

mentation, so, unlike spinlocks, they can be observed.

15.3 Examples

To get some idea of how and where spinlocks and lightweight locks can be used,

let’s take a look at two shared memory structures: buffer cache and ��� buffers.

I will name only some of the locks; the full picture is too complex and is likely to

interest only Postgre��� core developers.

Buffer Cache

To access a hash table p. ���used to locate a particular buffer in the cache, the process

must acquire a BufferMapping lightweight lock either in the shared mode for

reading or in the exclusive mode if any modifications are expected.

1 backend/storage/lmgr/lwlock.c

277

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/storage/lmgr/lwlock.c;hb=REL_14_STABLE

Chapter 15 Locks on Memory Structures

hash table

BufferMapping ×128

free buffers

clock hand

buffer strategy

BufferIO

BufferContent

buffer header

buffer
pin

The hash table is accessed very frequently, so this lock often becomes a bottleneck.

To maximize granularity, it is structured as a tranche of ��� individual lightweight

locks, each protecting a separate part of the hash table.1

A hash table lock was converted into a tranche of �� locks as early as ����, in Postgre���

�.�; ten years later, when version �.� was released, the size of the tranche was increased

to ���, but it may still be not enough for modern multi-core systems.

To get access to the buffer header, the process acquires a buffer header spinlock2

(the name is arbitrary, as spinlocks have no user-visible names). Some operations,

such as incrementing the usage counter, do not require explicit locks and can be

performed using atomic ��� instructions.

To read a page in a buffer, the process acquires a BufferContent lock in the header

of this buffer.3 It is usually held only while tuple pointers are being read; later on,

the protection provided by buffer pinningp. ��� will be enough. If the buffer content

has to be modified, the BufferContent lock must be acquired in the exclusive mode.

1 backend/storage/buffer/bufmgr.c

include/storage/buf_internals.h, BufMappingPartitionLock function
2 backend/storage/buffer/bufmgr.c, LockBufHdr function
3 include/storage/buf_internals.h

278

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/storage/buffer/bufmgr.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/include/storage/buf_internals.h;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/storage/buffer/bufmgr.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/include/storage/buf_internals.h;hb=REL_14_STABLE

15.3 Examples

When a buffer is read from disk (or written to disk), Postgre��� also acquires a

BufferIO lock in the buffer header; it is virtually an attribute used as a lock rather

than an actual lock.1 It signals other processes requesting access to this page that

they have to wait until the �/� operation is complete.

The pointer to free buffers and the clock hand of the eviction mechanism are pro-

tected by a single common buffer strategy spinlock.2

WAL Buffers

WALWrite

PrevBytePos

CurBytePos

insert position WALInsert ×8

WALBufMapping

hash table

W�� cache also uses a hash table to map pages to buffers. Unlike the buffer cache

hash table, it is protected by a single WALBufMapping lightweight lock because

��� cache is smaller (it usually takes 1

32
of the buffer cache size) and buffer access

is more ordered.3

Writing of ��� pages to disk is protected by a WALWrite lightweight lock, which

ensures that this operation is performed by one process at a time.

To create a ��� entry, the process first reserves some space within the ��� page

and then fills it with data. Space reservation is strictly ordered; the process must

acquire an insert position spinlock that protects the insertion pointer.4 But

1 backend/storage/buffer/bufmgr.c, StartBufferIO function
2 backend/storage/buffer/freelist.c
3 backend/access/transam/xlog.c, AdvanceXLInsertBuffer function
4 backend/access/transam/xlog.c, ReserveXLogInsertLocation function

279

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/storage/buffer/bufmgr.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/storage/buffer/freelist.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/transam/xlog.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/transam/xlog.c;hb=REL_14_STABLE

Chapter 15 Locks on Memory Structures

once the space is reserved, it can be filled by several concurrent processes. For this

purpose, each process must acquire any of the eight lightweight locks constituting

the WALInsert tranche.1

15.4 Monitoring Waits

Without doubt, locks are indispensable for correct Postgre��� operation, but they

can lead to undesirable waits. It is useful to track such waits to understand their

origin.

The easiest way to get an overview of long-term locks is to turn theoff log_lock_waits

parameter on; it enables extensive logging of all the locks that cause a transaction

to wait for more than1s deadlock_timeout. This data is displayed when a deadlock

checkp. ��� completes, hence the parameter name.

However, the pg_stat_activity viewv. �.� provides much more useful and complete in-

formation. Whenever a process—either a system process or a backend—cannot

proceed with its task because it is waiting for something, this wait is reflected in

the wait_event_type and wait_event fields, which show the type and name of the

wait, respectively.

All waits can be classified as follows.2

Waits on various locks constitute quite a large group:

Lock —heavyweight locks

LWLock — lightweight locks

BufferPin —pinned buffers

But processes can be waiting for other events too:

IO — input/output, when it is required to read or write some data

1 backend/access/transam/xlog.c, WALInsertLockAcquire function
2 postgresql.org/docs/14/monitoring-stats#WAIT-EVENT-TABLE.html

280

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/transam/xlog.c;hb=REL_14_STABLE
https://postgresql.org/docs/14/monitoring-stats#WAIT-EVENT-TABLE.html

15.4 Monitoring Waits

Client —data sent by the client (psql spends in this state most of the time)

IPC —data sent by another process

Extension —a specific event registered by an extension

Sometimes a process simply does not perform any useful work. Such waits are usu-

ally “normal,”meaning that they do not indicate any issues. This group comprises

the following waits:

Activity —background processes in their main cycle

Timeout — timer

Locks of each wait type are further classified by wait names. For example, waits on

lightweight locks get the name of the lock or the corresponding tranche.1

You should bear in mind that the pg_stat_activity view displays only those waits

that are handled in the source code in an appropriate way.2 Unless the name of the

wait appears in this view, the process is not in the state of wait of any known type.

Such time should be considered unaccounted for; it does not necessarily mean that

the process is not waiting on anything—we simply do not know what is happening

at the moment.

=> SELECT backend_type, wait_event_type AS event_type, wait_event

FROM pg_stat_activity;

backend_type | event_type | wait_event

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−

logical replication launcher | Activity | LogicalLauncherMain

autovacuum launcher | Activity | AutoVacuumMain

client backend | |

background writer | Activity | BgWriterMain

checkpointer | Activity | CheckpointerMain

walwriter | Activity | WalWriterMain

(6 rows)

Here all the background processes were idle when the view was sampled, while the

client backend was busy executing the query and was not waiting on anything.

1 postgresql.org/docs/14/monitoring-stats#WAIT-EVENT-LWLOCK-TABLE.html
2 include/utils/wait_event.h

281

https://postgresql.org/docs/14/monitoring-stats#WAIT-EVENT-LWLOCK-TABLE.html
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/include/utils/wait_event.h;hb=REL_14_STABLE

Chapter 15 Locks on Memory Structures

15.5 Sampling

Unfortunately, the pg_stat_activity view shows only the current information on

waits; statistics are not accumulated. The only way to collect wait data over time

is to sample the view at regular intervals.

We have to take into account the stochastic nature of sampling. The shorter the

wait as compared to the sampling interval, the lower the chance to detect this wait.

Thus, longer sampling intervals require more samples to reflect the actual state of

things (but as you increase the sampling rate, the overhead also rises). For the

same reason, sampling is virtually useless for analyzing short-lived sessions.

Postgre��� provides no built-in tools for sampling; however, we can still try it out

using the pg_wait_sampling1 extension. To do so, we have to specify its library in

the shared_preload_libraries parameter and restart the server:

=> ALTER SYSTEM SET shared_preload_libraries = 'pg_wait_sampling';

postgres$ pg_ctl restart -l /home/postgres/logfile

Now let’s install the extension into the database:

=> CREATE EXTENSION pg_wait_sampling;

This extension can display the history of waits, which is saved in its ring buffer.

However, it is much more interesting to get the waiting profile—the accumulated

statistics for the whole duration of the session.

For example, let’s take a look at the waits during benchmarking. We have to start

the pgbench utility and determine its process �� while it is running:

postgres$ /usr/local/pgsql/bin/pgbench -T 60 internals

=> SELECT pid FROM pg_stat_activity

WHERE application_name = 'pgbench';

pid

−−−−−−−

36367

(1 row)

Once the test is complete, the waits profile will look as follows:

1 github.com/postgrespro/pg_wait_sampling

282

https://github.com/postgrespro/pg_wait_sampling

15.5 Sampling

=> SELECT pid, event_type, event, count

FROM pg_wait_sampling_profile WHERE pid = 36367

ORDER BY count DESC LIMIT 4;

pid | event_type | event | count

−−−−−−−+−−−−−−−−−−−−+−−−−−−−−−−−−−−+−−−−−−−

36367 | IO | WALSync | 3478

36367 | IO | WALWrite | 52

36367 | Client | ClientRead | 30

36367 | IO | DataFileRead | 2

(4 rows)

By default (set by the 10mspg_wait_sampling.profile_period parameter) samples are taken

��� times per second. So to estimate the duration of waits in seconds, you have to

divide the count value by ���.

In this particular case, v. ��most of the waits are related to flushing ��� entries to disk.

It is a good illustration of the unaccounted-for wait time: theWALSync event was

not instrumented until Postgre��� ��; for lower versions, a waits profile would not

contain the first row, although the wait itself would still be there.

And here is how the profile will look like if we artificially slow down the file system

for each �/� operation to take �.� seconds (I use slowfs1 for this purpose) :

postgres$ /usr/local/pgsql/bin/pgbench -T 60 internals

=> SELECT pid FROM pg_stat_activity

WHERE application_name = 'pgbench';

pid

−−−−−−−

36747

(1 row)

=> SELECT pid, event_type, event, count

FROM pg_wait_sampling_profile WHERE pid = 36747

ORDER BY count DESC LIMIT 4;

pid | event_type | event | count

−−−−−−−+−−−−−−−−−−−−+−−−−−−−−−−−−−−−−+−−−−−−−

36747 | IO | WALWrite | 3603

36747 | LWLock | WALWrite | 2095

36747 | IO | WALSync | 22

36747 | IO | DataFileExtend | 19

(4 rows)

1 github.com/nirs/slowfs

283

https://github.com/nirs/slowfs

Chapter 15 Locks on Memory Structures

Now �/� operations are the slowest ones—mainly those that are related to writing

��� files to disk in the synchronous mode. Since ��� writing is protected by a

WALWrite lightweight lock, the corresponding row also appears in the profile.

Clearly, the same lock is acquired in the previous example too, but since the wait is

shorter than the sampling interval, it either is sampled very few times or does not

make it into the profile at all. It illustrates once again that to analyze short waits

you have to sample them for quite a long time.

284

Part IV

Query Execution

16
Query Execution Stages

16.1 Demo Database

The examples in the previous parts of the book were based on simple tables with

only a handful of rows. This and subsequent parts deal with query execution,which

is more demanding in this respect: we need related tables that have a much larger

number of rows. Instead of inventing a new data set for each example, I took an

existing demo database that illustrates passenger air traffic in Russia.1 It has sev-

eral versions; we will use the bigger one created on August 15, 2017. To install this

version, you have to extract the file containing the database copy from the archive2

and run this file in psql.

When developing this demo database, we tried to make its schema simple enough

to be understood without extra explanations; at the same time, we wanted it to be

complex enough to allow writing meaningful queries. The database is filled with

true-to-life data, which makes the examples more comprehensive and should be

interesting to work with.

Here I will cover the main database objects only briefly; if you would like to re-

view the whole schema, you can take a look at its full description referenced in the

footnote.

The main entity is a booking (mapped to the bookings table). One booking can

include several passengers, each with a separate electronic ticket (tickets). A pas-

senger does not constitute a separate entity; for the purpose of our experiments,

we will assume that all passengers are unique.

1 postgrespro.com/community/demodb
2 edu.postgrespro.com/demo-big-en-20170815.zip

287

https://postgrespro.com/community/demodb
https://edu.postgrespro.com/demo-big-en-20170815.zip

Chapter 16 Query Execution Stages

Each ticket includes one or more flight segments (mapped to the ticket_flights ta-

ble). A single ticket can have several flight segments in two cases: either it is a

round-trip ticket, or it is issued for connecting flights. Although there is no cor-

responding constraint in the schema, all tickets in a booking are assumed to have

the same flight segments.

Each flight (flights) goes from one airport (airports) to another. Flights with the

sameflight number have the samepoints of departure anddestination but different

departure dates.

The routes view is based on the flights table; it displays the information on routes

that does not depend on particular flight dates.

At check-in, each passenger is issued a boarding pass (boarding_passes) with a seat

number. A passenger can check in for a flight only if this flight is included into the

ticket. Flight-seat combinations must be unique, so it is impossible to issue two

boarding passes for the same seat.

The number of seats (seats) in an aircraft and their distribution between different

travel classes depend on the particular model of the aircraft (aircrafts) that per-

forms the flight. It is assumed that each aircraft model can have only one cabin

configuration.

Some tables have surrogate primary keys, while others use natural ones (some of

them being composite). It is done solely for demonstration purposes and is by no

means an example to follow.

The demo database can be thought of as a dump of a real system: it contains a

snapshot of data taken at a particular time in the past. To display this time, you

can call the bookings.now() function. Use this function in demo queries that would

demand the now() function in real life.

The names of airports, cities, and aircraftmodels are stored in the airports_data and

aircrafts_data tables; they are provided in two languages, English and Russian. To

construct examples for this chapter, I will typically query the airports and aircrafts

views shown in the entity-relationship diagram; these views choose the output

language based on theen bookings.lang parameter value. The names of some base

tables can still appear in query plans though.

288

16.1 Demo Database

B
o
o
k
in
g
s

#
b
o
o
k
_r
e
f

∗
b
o
o
k
_d
a
te

∗
to
ta
l_
a
m
o
u
n
t

A
ir
p
o
rt
s

#
a
ir
p
o
rt
_c
o
d
e

∗
a
ir
p
o
rt
_n
a
m
e

∗
ci
ty

∗
co

o
rd
in
a
te
s

∗
ti
m
e
zo

n
e

T
ic
k
e
ts

#
ti
ck
e
t_
n
o

∗
b
o
o
k
_r
e
f

∗
p
a
ss
e
n
g
e
r_
id

∗
p
a
ss
e
n
g
e
r_
n
a
m
e

∗
co

n
ta
ct
_d
a
ta

T
ic
k
e
t_
fl
ig
h
ts

#
ti
ck
e
t_
n
o

#
fl
ig
h
t_
id

∗
fa
re
_c
o
n
d
it
io
n
s

∗
a
m
o
u
n
t

F
li
g
h
ts

#
fl
ig
h
t_
id

∗
fl
ig
h
t_
n
o

∗
sc
h
e
d
u
le
d
_d
e
p
a
rt
u
re

∗
sc
h
e
d
u
le
d
_a
rr
iv
a
l

∗
d
e
p
a
rt
u
re
_a
ir
p
o
rt

∗
a
rr
iv
a
l_
a
ir
p
o
rt

∗
st
a
tu
s

∗
a
ir
cr
a
ft
_c
o
d
e

∘
a
ct
u
a
l_
d
e
p
a
rt
u
re

∘
a
ct
u
a
l_
a
rr
iv
a
l

A
ir
cr
a
ft
s

#
a
ir
cr
a
ft
_c
o
d
e

∗
m
o
d
e
l

∗
ra
n
g
e

B
o
a
rd
in
g
_p

a
ss
e
s

#
ti
ck
e
t_
n
o

#
fl
ig
h
t_
id

∗
b
o
a
rd
in
g
_n
o

∗
se
a
t_
n
o

S
e
a
ts

#
a
ir
cr
a
ft
_c
o
d
e

#
se
a
t_
n
o

∗
fa
re
_c
o
n
d
it
io
n
s

1

289

Chapter 16 Query Execution Stages

16.2 Simple Query Protocol

A simple version of the client-server protocol1 enables ��� query execution: it

sends the text of a query to the server and gets the full execution result in response,

no matter how many rows it contains.2 A query sent to the server passes several

stages: it is parsed, transformed, planned, and then executed.

Parsing

First of all, Postgre��� has to parse3 the query text to understand what needs to be

executed.

Lexical and syntactic analyisis. The lexer splits the query text into a set of lexemes4

(such as keywords, string literals, and numeric literals), while the parser validates

this set against the ��� language grammar.5 Postgre��� relies on standard parsing

tools, namely Flex and Bison utilities.

The parsed query is reflected in the backend’s memory as an abstract syntax tree.

For example, let’s take a look at the following query:

SELECT schemaname, tablename

FROM pg_tables

WHERE tableowner = 'postgres'

ORDER BY tablename;

The lexer singles out five keywords, five identifiers, a string literal, and three single-

letter lexemes (a comma, an equals sign, and a semicolon). The parser uses these

lexemes to build the parse tree, which is shown in the illustration below in a very

simplified form. The captions next to the tree nodes specify the corresponding

parts of the query:

1 postgresql.org/docs/14/protocol.html
2 backend/tcop/postgres.c, exec_simple_query function
3 postgresql.org/docs/14/parser-stage.html

backend/parser/README
4 backend/parser/scan.l
5 backend/parser/gram.y

290

https://postgresql.org/docs/14/protocol.html
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/tcop/postgres.c;hb=REL_14_STABLE
https://postgresql.org/docs/14/parser-stage.html
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/parser/README;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/parser/scan.l;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/parser/gram.y;hb=REL_14_STABLE

16.2 Simple Query Protocol

QUERY

TARGETENTRY FROMEXPR

RTE

pg_tables

OPEXPR

tableowner = 'postgres'

SORTGROUPCLAUSE

SELECT

schemaname, tablename FROM ORDER BY tablename

pg_table WHERE tableowner = 'postgres'

A rather obscure ��� abbreviation stands for Range Table Entry. Postgre��� source

code uses the term range table to refer to tables, subqueries, join results—in other

words, to any sets of rows that can be processed by ��� operators.1

Semantic analysis. The purpose of semantic analysis2 is to determine whether the

database contains any tables or other objects that this query refers to by name,

and whether the user has permission to access these objects. All the information

required for semantic analysis is stored p. ��in the system catalog.

Having received the parse tree, the semantic analyzer performs its further restruc-

turing, which includes adding references to specific database objects, data types,

and other information.

If you enable the debug_print_parse parameter, you can view the full parse tree in

the server log, but it has little practical sense.

Transformation

At the next stage, the query can be transformed (rewritten).3

1 include/nodes/parsenodes.h
2 backend/parser/analyze.c
3 postgresql.org/docs/14/rule-system.html

291

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/include/nodes/parsenodes.h;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/parser/analyze.c;hb=REL_14_STABLE
https://postgresql.org/docs/14/rule-system.html

Chapter 16 Query Execution Stages

Postgre��� core uses transformations for several purposes. One of them is to re-

place the name of the view in the parse tree with the subtree corresponding to the

base query of this view.

Another case of using transformations is row-level security implementation.1

The ������ and ����� clauses of recursive queriesv. �� also get transformed during this

stage.2

In the example above, pg_tables is a view; if we placed its definition into the query

text, it would look as follows:

SELECT schemaname, tablename

FROM (

-- pg_tables

SELECT n.nspname AS schemaname,

c.relname AS tablename,

pg_get_userbyid(c.relowner) AS tableowner,

...

FROM pg_class c

LEFT JOIN pg_namespace n ON n.oid = c.relnamespace

LEFT JOIN pg_tablespace t ON t.oid = c.reltablespace

WHERE c.relkind = ANY (ARRAY['r'::char, 'p'::char])

)

WHERE tableowner = 'postgres'

ORDER BY tablename;

However, the server does not process the text representation of the query; all ma-

nipulations are performed on the parse tree. The illustration shows a reduced

version of the transformed tree (you can view its full version in the server log if

you enable the debug_print_rewritten parameter).

The parse tree reflects the syntactic structure of the query, but it says nothing

about the order in which the operations should be performed.

Postgre��� also supports custom transformations, which the user can implement

via the rewrite rule system.3

1 backend/rewrite/rowsecurity.c
2 backend/rewrite/rewriteSearchCycle.c
3 postgresql.org/docs/14/rules.html

292

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/rewrite/rowsecurity.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/rewrite/rewriteSearchCycle.c;hb=REL_14_STABLE
https://postgresql.org/docs/14/rules.html

16.2 Simple Query Protocol

QUERY

TARGETENTRY FROMEXPR

RTE

pg_tables

QUERY

TARGETENTRY FROMEXPR

JOINEXPR

JOINEXPR

RTE

pg_class

RTE

pg_namespace

OPEXPR

n.oid = c.relnamespace

RTE

pg_tablespace

OPEXPR

t.oid = c.reltablespace

OPEXPR

c.relkind = ANY (ARRAY[...])

OPEXPR

tableowner = 'postgres'

SORTGROUPCLAUSE

The rule system support was proclaimed as one of the main objectives of Postgres devel-

opment;1 it was still an academic project when the rules were first implemented, but since

then they have been redesigned multiple times. The rule system is a very powerful mech-

anism, but it is rather hard to comprehend and debug. It was even proposed to remove the

rules from Postgre��� altogether, but the idea did not find unanimous support. In most

cases, it is safer and easier to use triggers instead of rules.

1 M. Stonebraker, L. A. Rowe. The Design of Postgres

293

https://dsf.berkeley.edu/papers/ERL-M85-95.pdf

Chapter 16 Query Execution Stages

Planning

S�� is a declarative language: queries specify what data to fetch, but not how to

fetch it.

Any query has several execution paths. Each operation shown in the parse tree

can be completed in a number of ways: for example, the result can be retrieved by

reading the whole table (and filtering out redundancies), or by finding the required

rows via an index scan. Data sets are always joined in pairs, so there is a huge

number of options that differ in the order of joins. Besides, there are various join

algorithms: for example, the executor can scan the rows of the first data set and

search for the matching rows in the other set, or both data sets can be first sorted

and then merged together. For each algorithm, we can find a use case where it

performs better than others.

The execution times of optimal and non-optimal plans can differ by orders of mag-

nitude, so the planner1 that optimizes the parsed query is one of the most complex

components of the system.

Plan tree. The execution plan is also represented as a tree, but its nodes deal with

physical operations on data rather than logical ones.

If you would like to explore full plan trees, you can dump them into the server log

by enabling the debug_print_plan parameter. But in practice it is usually enough to

view the text representation of the plan displayed by the ������� command.2

The following illustration highlights the main nodes of the tree. It is exactly these

nodes that are shown in the output of the ������� command provided below.

For now, let’s pay attention to the following two points:

• The tree contains only two queried tables out of three: the planner saw that

one of the tables is not required for retrieving the result and removed it from

the plan tree.

• For each node of the tree, the planner provides the estimated cost and the

number of rows expected to be processed.

1 postgresql.org/docs/14/planner-optimizer.html
2 postgresql.org/docs/14/using-explain.html

294

https://postgresql.org/docs/14/planner-optimizer.html
https://postgresql.org/docs/14/using-explain.html

16.2 Simple Query Protocol

=> EXPLAIN SELECT schemaname, tablename

FROM pg_tables

WHERE tableowner = 'postgres'

ORDER BY tablename;

QUERY PLAN

−−−

Sort (cost=21.03..21.04 rows=1 width=128)

Sort Key: c.relname

−> Nested Loop Left Join (cost=0.00..21.02 rows=1 width=128)

Join Filter: (n.oid = c.relnamespace)

−> Seq Scan on pg_class c (cost=0.00..19.93 rows=1 width=72)

Filter: ((relkind = ANY ('{r,p}'::"char"[])) AND (pg_g...

−> Seq Scan on pg_namespace n (cost=0.00..1.04 rows=4 wid...

(7 rows)

Seq Scan p. ���nodes shown in the query plan correspond to reading the table, while the

Nested Loop p. ���node represents the join operation.

PLANNEDSTMT

SORT

TARGETENTRY NESTLOOP

TARGETENTRY
SEQSCAN

pg_class

OPEXPR

relkind = ANY ('r,p'::"char"[]) AND pg_get_userbyid(relowner) = 'postgres'::name

SEQSCAN

pg_namespace

OPEXPR

n.oid = c.relnamespace

Plan search. Postgre��� uses a cost-based optimizer;1 it goes over potential plans

and estimates the resources required for their execution (such as �/� operations or

��� cycles). Normalized to a numeric value, this estimation is called the cost of the

plan. Of all the considered plans, the one with the lowest cost is selected.

1 backend/optimizer/README

295

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/optimizer/README;hb=REL_14_STABLE

Chapter 16 Query Execution Stages

The problem is that the number of potentially available plans grows exponentially

with the number of joined tables, so it is impossible to consider them all—even for

relatively simple queries. The search is typically narrowed down using the dynamic

programming algorithm combined with some heuristics. It allows the planner to

find a mathematically accurate solution for queries with a larger number of tables

within acceptable time.

An accurate solution does not guarantee that the selected plan is really the optimal one,

as the planner uses simplified mathematical models and may lack reliable input data.

Managing the order of joins. A query can be structured in a way that limits the

search scope to some extent (at a risk of missing the optimal plan).

• Common table expressionsv. �� and the main query can be optimized separately;

to guarantee such behavior, you can specify the ������������ clause.1

• Subqueries run within non-��� functions are always optimized separately.

(S�� functions can sometimes be inlined into the main query.2)

• If you set the join_collapse_limit parameter and use explicit ���� clauses in the

query, the order of some joins will be defined by the query syntax structure;

the from_collapse_limit parameter has the same effect on subqueries.3

The latter point may have to be explained. Let’s take a look at the query that does

not specify any explicit joins for tables listed in the ���� clause:

SELECT ...

FROM a, b, c, d, e

WHERE ...

Here the planner will have to consider all the possible pairs of joins. The query is

represented by the following part of the parse tree (shown schematically):

1 postgresql.org/docs/14/queries-with.html
2 wiki.postgresql.org/wiki/Inlining_of_SQL_functions
3 postgresql.org/docs/14/explicit-joins.html

296

https://postgresql.org/docs/14/queries-with.html
https://wiki.postgresql.org/wiki/Inlining_of_SQL_functions
https://postgresql.org/docs/14/explicit-joins.html

16.2 Simple Query Protocol

FROMEXPR

A B C D E

In the next example, joins have a certain structure defined by the ���� clause:

SELECT ...

FROM a, b JOIN c ON ..., d, e

WHERE ...

The parse tree reflects this structure:

FROMEXPR

A JOINEXPR

B C

D E

The planner typically flattens the join tree, so that it looks like the one in the first

example. The algorithm recursively traverses the tree and replaces each ��������

node with a flat list of its elements.1

However, such collapsing is performed only if the resulting flat list has no more

than 8join_collapse_limit elements. In this particular case, the �������� node would

not be collapsed if the join_collapse_limit value were less than five.

For the planner, it means the following:

• Table �must be joined with table � (or vice versa, �must be joined with �; the

order of joins within a pair is not restricted).

• Tables �, �, � and the result of joining � and � can be joined in any order.

1 backend/optimizer/plan/initsplan.c, deconstruct_jointree function

297

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/optimizer/plan/initsplan.c;hb=REL_14_STABLE

Chapter 16 Query Execution Stages

If the join_collapse_limit parameter is set to one, the order defined by explicit ����

clauses is preserved.

As for ���� ����� ���� operands, they are never collapsed, regardless of the value of

the join_collapse_limit parameter.

The8 from_collapse_limit parameter controls subquery flattening in a similar way.

Although subqueries do not look like ���� clauses, the similarity becomes apparent

at the parse tree level.

Here is a sample query:

SELECT ...

FROM a,

(

SELECT ... FROM b, c WHERE ...

) bc,

d, e

WHERE ...

The corresponding join tree is shown below. The only difference here is that this

tree contains the �������� node instead of �������� (hence the parameter name).

FROMEXPR

A FROMEXPR

B C

D E

Genetic query optimization. Once flattened, the tree may contain too many ele-

ments at one level—either tables or join results, which have to be optimized sepa-

rately. Planning time depends exponentially on the number of data sets that have

to be joined, so it can grow beyond all reasonable limits.

If theon geqo parameter is enabled and the number of elements at one level exceeds

the12 geqo_threshold value, the planner will use the genetic algorithm to optimize the

298

16.2 Simple Query Protocol

query.1 This algorithm is much faster than its dynamic programming counterpart,

but it cannot guarantee that the found plan will be optimal. So the rule of thumb

is to avoid using the genetic algorithm by reducing the number of elements that

have to be optimized.

The genetic algorithm has several configurable parameters,2 but I am not going to

cover them here.

Choosing the best plan. Whether the plan can be considered optimal or not de-

pends on how a particular client is going to use the query result. If the client needs

the full result at once (for example, to create a report), the plan should optimize

retrieval of all the rows. But if the priority is to return the first rows as soon as

possible (for example, to display them on screen), the optimal plan might be com-

pletely different.

To make this choice, Postgre��� calculates two components of the cost:

=> EXPLAIN

SELECT schemaname, tablename

FROM pg_tables

WHERE tableowner = 'postgres'

ORDER BY tablename;

QUERY PLAN

−−−

Sort (cost=21.03..21.04 rows=1 width=128)

Sort Key: c.relname

−> Nested Loop Left Join (cost=0.00..21.02 rows=1 width=128)

Join Filter: (n.oid = c.relnamespace)

−> Seq Scan on pg_class c (cost=0.00..19.93 rows=1 width=72)

Filter: ((relkind = ANY ('{r,p}'::"char"[])) AND (pg_g...

−> Seq Scan on pg_namespace n (cost=0.00..1.04 rows=4 wid...

(7 rows)

The first component (the startup cost) represents the price you pay to prepare for

node execution, while the second component (the total cost) comprises all the ex-

penses incurred by fetching the result.

1 postgresql.org/docs/14/geqo.html

backend/optimizer/geqo/geqo_main.c
2 postgresql.org/docs/14/runtime-config-query#RUNTIME-CONFIG-QUERY-GEQO.html

299

https://postgresql.org/docs/14/geqo.html
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/optimizer/geqo/geqo_main.c;hb=REL_14_STABLE
https://postgresql.org/docs/14/runtime-config-query#RUNTIME-CONFIG-QUERY-GEQO.html

Chapter 16 Query Execution Stages

It is sometimes stated that the startup cost is the cost of retrieving the first row of the

result set, but it is not quite accurate.

To single out the preferred plans, the optimizer checks whether the query uses a

cursor (either via the ������� command provided in ��� or declared explicitly in

��/pg���).1 If not, the client is assumed to need the whole result at once, and the

optimizer chooses the plan with the least total cost.

If the query is executed with a cursor, the selected plan must optimize retrieval

of only0.1 cursor_tuple_fraction of all rows. To be more exact, Postgre��� chooses the

plan with the smallest value of the following expression:2

startup cost + cursor_tuple_fraction (total cost − startup cost)

An outline of cost estimation. To estimate the total cost of a plan, we have to get

cost estimations for all its nodes. The cost of a node depends on its type (it is ob-

vious that the cost of reading heap data is not the same as the sorting cost) and

on the amount of data processed by this node (larger data volumes typically in-

cur higher costs). While node types are known, the amount of data can only be

projected based on the estimated cardinality of input sets (the number of rows the

node takes as input) and the selectivity of the node (the fraction of rows remaining

at the output). These calculations rely on the collected statisticsp. ��� , such as table sizes

and data distribution in table columns.

Thus, the performed optimization depends on correctness of statistical data that

is gathered and updated by autovacuum.

If cardinality estimation is accurate for each node, the calculated cost is likely to

adequately reflect the actual cost. The main planning flaws usually result from

incorrect estimation of cardinality and selectivity, which can be caused by inaccu-

rate or outdated statistics, inability to use it, or—to a lesser extent—by imperfect

planning models.

Cardinality estimation. To calculate the cardinality of a node, the planner has to

recursively complete the following steps:

1 backend/optimizer/plan/planner.c, standard_planner function
2 backend/optimizer/util/pathnode.c, compare_fractional_path_costs function

300

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/optimizer/plan/planner.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/optimizer/util/pathnode.c;hb=REL_14_STABLE

16.2 Simple Query Protocol

� Estimate the cardinality of each child node and assess the number of input

rows that the node will receive from them.

� Estimate the selectivity of the node, that is, the fraction of input rows that will

remain at the output.

The cardinality of the node is the product of these two values.

Selectivity is represented by a number from � to �. The smaller the number, the higher

the selectivity, and vice versa, a number that is close to one denotes low selectivity. It may

seem illogical, but the idea is that a highly selective condition rejects almost all the rows,

while the one that dismisses only a few has low selectivity.

First, the planner estimates cardinalities of leaf nodes that define data access

methods. These calculations rely on the collected statistics, such as the total size

of the table.

Selectivity of filter conditions depends on their types. In the most trivial case,

it can be assumed to be a constant value, although the planner tries to use all the

available information to refine the estimation. In general, it is enough to knowhow

to estimate simple filter conditions; if a condition includes logical operations, its

selectivity is calculated by the following formulas:1

selx and y = selx sely

selx or y = 1 − (1 − selx)(1 − sely) = selx + sely − selx sely

Unfortunately, these formulas assume that p. ���predicates x and y do not depend on

each other. For correlated predicates, such estimations will be inaccurate.

To estimate the cardinality of joins, the planner has to get the cardinality of the

Cartesian product (that is, the product of cardinalities of two data sets) and es-

timate the selectivity of join conditions, which is again dependent on condition

types.

Cardinality of other nodes (such as sorting or aggregation) is estimated in a similar

manner.

It is important to note that incorrect cardinality estimation for lower plan nodes

affects all the subsequent calculations, leading to inaccurate total cost estimation

1 backend/optimizer/path/clausesel.c, clauselist_selectivity_ext & clauselist_selectivity_or functions

301

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/optimizer/path/clausesel.c;hb=REL_14_STABLE

Chapter 16 Query Execution Stages

and a poor plan choice. To make things worse, the planner has no statistics on join

results, only on tables.

Cost estimation. The process of estimating the cost is also recursive. To calculate

the cost of a subtree, it is required to calculate and sum up the costs of all its child

nodes and then add the cost of the parent node itself.

To estimate the cost of a node, Postgre��� applies the mathematical model of the

operation performed by this node, using the already estimated node cardinality as

input. For each node, both startup and total costs are calculated.

Someoperations havenoprerequisites, so their execution starts immediately; such

nodes have zero startup cost.

Other operations, on the contrary, need to wait for some preliminary actions to

complete. For example, a sort node usually has to wait for all the data from its

child nodes before it can proceed to its own tasks. The startup cost of such nodes

is usually higher than zero: this price has to be paid even if the above node (or the

client) needs only one row of the whole output.

All calculations performed by the planner are simply estimations, which may have

nothing to do with the actual execution time. Their only purpose is to enable com-

parison of different plans for the same query in the same conditions. In other cases,

it makes no sense to compare queries (especially different ones) in terms of their

cost. For example, the cost could have been underestimated because of outdated

statistics; once the statistics are refreshed, the calculated figuremay rise, but since

the estimation becomes more accurate, the server will choose a better plan.

Execution

The plan built during query optimization now has to be executed.1

The executor opens a portal in the backend’s memory;2 it is an object that keeps

the state of the query currently being executed. This state is represented as a tree

1 postgresql.org/docs/14/executor.html

backend/executor/README
2 backend/utils/mmgr/portalmem.c

302

https://postgresql.org/docs/14/executor.html
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/executor/README;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/utils/mmgr/portalmem.c;hb=REL_14_STABLE

16.2 Simple Query Protocol

SORT

NESTLOOP

SEQSCAN

pg_class

SEQSCAN

pg_namespace

that repeats the structure of the plan tree. The nodes of this tree operate like an

assembly line, requesting and sending rows from one another.

Query execution starts at the root. The root node (which represents the ���� op-

eration in this example) pulls the data from its child node. Having received all the

rows, it sorts them and passes them on to the client.

Some nodes (like the �������� node shown in this illustration) join data sets re-

ceived from different sources. Such a node pulls the data from two child nodes,

and, having received a pair of rows that satisfy the join condition, passes the re-

sulting row upwards right away (unlike sorting, which has to get all the rows first).

At this point, the execution of the node is interrupted until its parent requests the

next row. If only a partial result is required (for example, there is a ����� clause in

the query), the operation will not be performed in full.

The two ������� leaf nodes of the tree are responsible for table scans. When the

parent node requests the data from these nodes, they fetch the subsequent row

from the corresponding table.

Thus, some nodes do not store any rows, passing them upwards immediately, but

others (such as ����) have to keep potentially large volumes of data. For this pur-

pose, a 4MBwork_mem chunk is allocated in the backend’s memory; if it is not enough,

the remaining data is spilled into temporary files on disk.1

Aplan can have several nodes that need a data storage, so Postgre���may allocate

several memory chunks, each of the work_mem size. The total size of ��� that a

query can use is not limited in any way.

1 backend/utils/sort/tuplestore.c

303

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/utils/sort/tuplestore.c;hb=REL_14_STABLE

Chapter 16 Query Execution Stages

16.3 Extended Query Protocol

When using the simple query protocol, each command (even if it is being repeated

multiple times) has to go through all the aforementioned stages:

� parsing

� transformation

� planning

� execution

However, there is no point in parsing one and the same query time and again. Re-

peated parsing of queries that differ only in constants does not make much sense

either—the parse tree structure still remains the same.

Another downside of the simple query protocol is that the client receives the whole

result at once, regardless of the number of rows it may contain.

In general, it is possible to get over these limitations using ��� commands. To deal

with the first one, you can ������� the query before running the ������� command;

the second concern can be addressed by creating a cursor with ������� and return-

ing rows via �����. But in this case, naming of these newly created objects must

be handled by the client, while the server gets additional overhead of parsing extra

commands.

The extended client-server protocol provides an alternative solution, enabling pre-

cise control over separate operator execution stages at the command level of the

protocol itself.

Preparation

During the preparation stage, the query is parsed and transformed as usual, but the

resulting parse tree is kept in the backend’s memory.

Postgre��� has no global cache for queries. The disadvantage of this architecture

is obvious: each backend has to parse all the incoming queries, even if the same

query has been already parsed by another backend. But there are some benefits

304

16.3 Extended Query Protocol

too. Global cache can easily become a bottleneck because of locks. p. ���Aclient running

multiple small but different queries (like the ones varying only in constants) gen-

erates much traffic and can negatively affect performance of the whole instance.

In Postgre���, queries are parsed locally, so there is no impact on other processes.

A prepared query can be parameterized. Here is a simple example using ��� com-

mands (although it is not the same as preparation at the protocol level, the ultimate

effect is the same):

=> PREPARE plane(text) AS

SELECT * FROM aircrafts WHERE aircraft_code = $1;

All the named prepared statements are shown in the pg_prepared_statements view:

=> SELECT name, statement, parameter_types

FROM pg_prepared_statements \gx

−[RECORD 1]−−−+−−

name | plane

statement | PREPARE plane(text) AS +

| SELECT * FROM aircrafts WHERE aircraft_code = $1;

parameter_types | {text}

You will not find any unnamed statements here (the ones that use the extended

query protocol or ��/pg���). The statements prepared by other backends are not

displayed either: it is impossible to access the other session’s memory.

Parameter Binding

Before a prepared statement gets executed, the actual parameter values have to be

bound.

=> EXECUTE plane('733');

aircraft_code | model | range

−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−+−−−−−−−

733 | Boeing 737−300 | 4200

(1 row)

The advantage of binding parameters in prepared statements over concatenating

literals with query strings is that it makes ��� injections absolutely impossible:

a bound parameter value cannot modify the already built parse tree in any way.

305

Chapter 16 Query Execution Stages

To reach the same security level without prepared statements, you would have to

carefully escape each value received from an untrusted source.

Planning and Execution

When it comes to prepared statement execution, query planning is performed

based on the actual parameter values; then the plan is passed on to the executor.

Different parameter values may imply different optimal plans, so it is important

to take the exact values into account. For example, when looking for expensive

bookings, the planner assumes that there are not so many matching rows and uses

an index scan:

=> CREATE INDEX ON bookings(total_amount);

=> EXPLAIN SELECT * FROM bookings

WHERE total_amount > 1000000;

QUERY PLAN

−−−

Bitmap Heap Scan on bookings (cost=86.49..9245.82 rows=4395 wid...

Recheck Cond: (total_amount > '1000000'::numeric)

−> Bitmap Index Scan on bookings_total_amount_idx (cost=0.00....

Index Cond: (total_amount > '1000000'::numeric)

(4 rows)

But if the provided condition is satisfied by all the bookings, there is no point in

using an index, as the whole table has to be scanned:

=> EXPLAIN SELECT * FROM bookings WHERE total_amount > 100;

QUERY PLAN

−−−

Seq Scan on bookings (cost=0.00..39835.88 rows=2111110 width=21)

Filter: (total_amount > '100'::numeric)

(2 rows)

In some cases, the plannermay keep both the parse tree and the query plan to avoid

repeated planning. Such a plan does not take parameter values into account, so it

is called a generic plan (as compared to custom plans based on the actual values).1

1 backend/utils/cache/plancache.c, choose_custom_plan function

306

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/utils/cache/plancache.c;hb=REL_14_STABLE

16.3 Extended Query Protocol

An obvious case when the server can use a generic plan without compromising

performance is a query with no parameters.

The first five optimizations of parameterized prepared statements always rely on

the actual parameter values; the planner calculates the average cost of custom

plans based on these values. Starting from the sixth execution, if the generic plan

turns out to be more efficient than custom plans on average (taking into account

that customplans have to be built anew every time),1 the planner keeps the generic

plan and continues using it, skipping the optimization stage.

The plane prepared statement has already been executed once. After the next three

executions, the server still uses custom plans—you can tell by the parameter value

in the query plan:

=> EXECUTE plane('763');

=> EXECUTE plane('773');

=> EXPLAIN EXECUTE plane('319');

QUERY PLAN

−−

Seq Scan on aircrafts_data ml (cost=0.00..1.39 rows=1 width=52)

Filter: ((aircraft_code)::text = '319'::text)

(2 rows)

After the fifth execution, the planner switches to the generic plan: it does not differ

from the custom ones and has the same cost, but the backend can build it once

and skip the optimization stage, thus reducing planning overhead. The �������

command now shows that the parameter is referred to by position rather than by

its value:

=> EXECUTE plane('320');

=> EXPLAIN EXECUTE plane('321');

QUERY PLAN

−−

Seq Scan on aircrafts_data ml (cost=0.00..1.39 rows=1 width=52)

Filter: ((aircraft_code)::text = $1)

(2 rows)

1 backend/utils/cache/plancache.c, cached_plan_cost function

307

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/utils/cache/plancache.c;hb=REL_14_STABLE

Chapter 16 Query Execution Stages

We can easily imagine an unhappy turn of events when the first several custom

plans aremore expensive than the generic plan; subsequent plans could have been

more efficient, but the planner will not consider them at all. Besides, it compares

estimations rather than actual costs, which can also lead to miscalculations.

However,v. �� if the planner makes a mistake, you can override the automatic decision

and select either the generic or a custom plan by setting theauto plan_cache_mode pa-

rameter accordingly:

=> SET plan_cache_mode = 'force_custom_plan';

=> EXPLAIN EXECUTE plane('CN1');

QUERY PLAN

−−

Seq Scan on aircrafts_data ml (cost=0.00..1.39 rows=1 width=52)

Filter: ((aircraft_code)::text = 'CN1'::text)

(2 rows)

Among other things, the pg_prepared_statements viewv. �� shows statistics on chosen

plans:

=> SELECT name, generic_plans, custom_plans

FROM pg_prepared_statements;

name | generic_plans | custom_plans

−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−

plane | 1 | 6

(1 row)

Getting the Results

The extended query protocol allows retrieving data in batches rather than all at

once. ��� cursors have almost the same effect (except that there is some extra work

for the server, and the planner optimizes fetching of the first cursor_tuple_fraction

rows, not the whole result set):

=> BEGIN;

=> DECLARE cur CURSOR FOR

SELECT *

FROM aircrafts

ORDER BY aircraft_code;

308

16.3 Extended Query Protocol

=> FETCH 3 FROM cur;

aircraft_code | model | range

−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−+−−−−−−−

319 | Airbus A319−100 | 6700

320 | Airbus A320−200 | 5700

321 | Airbus A321−200 | 5600

(3 rows)

=> FETCH 2 FROM cur;

aircraft_code | model | range

−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−+−−−−−−−

733 | Boeing 737−300 | 4200

763 | Boeing 767−300 | 7900

(2 rows)

=> COMMIT;

If the query returns many rows and the client needs them all, the system through-

put highly depends on the batch size. The more rows in a batch, the less communi-

cation overhead is incurred by accessing the server and getting the response. But

as the batch size grows, these benefits become less tangible: while the difference

between fetching rows one by one and in batches of ten rows can be enormous, it

is much less noticeable if you compare batches of ��� and ���� rows.

309

17
Statistics

17.1 Basic Statistics

Basic relation-level statistics1 are stored in the pg_class table of the system catalog

and include the following data:

• number of tuples in a relation (reltuples)

• relation size, in pages (relpages)

• number of pages tagged in the visibility map (relallvisible)p. ��

Here are these values for the flights table:

=> SELECT reltuples, relpages, relallvisible

FROM pg_class WHERE relname = 'flights';

reltuples | relpages | relallvisible

−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−−−−−−

214867 | 2624 | 2624

(1 row)

If the query does not impose any filter conditions, the reltuples value serves as the

cardinality estimation:

=> EXPLAIN SELECT * FROM flights;

QUERY PLAN

−−

Seq Scan on flights (cost=0.00..4772.67 rows=214867 width=63)

(1 row)

1 postgresql.org/docs/14/planner-stats.html

310

https://postgresql.org/docs/14/planner-stats.html

17.1 Basic Statistics

Statistics are collected during table analysis p. ���, both manual and automatic.1 Fur-

thermore, since basic statistics are of paramount importance, this data is calcu-

lated during some other operations as well (������ ���� and �������,2 ������ �����

and �������3) and is refined during vacuuming.4

For analysis purposes, 300× 100default_statistics_target random rows are sampled. The

sample size required to build statistics of a particular accuracy has low dependency

on the volume of analyzed data, so the size of the table is not taken into account.5

Sampled rows are picked from the same number (300 × default_statistics_target) of

random pages.6 Obviously, if the table itself is smaller, fewer pages may be read,

and fewer rows will be selected for analysis.

In large tables, statistics collection does not include all the rows, so estimations can

diverge from actual values. It is perfectly normal: if the data is changing, statistics

cannot be accurate all the time anyway. Accuracy of up to an order of magnitude

is usually enough to choose an adequate plan.

Let’s create a copy of the flights table with autovacuum disabled, so that we can

control the autoanalysis start time:

=> CREATE TABLE flights_copy(LIKE flights)

WITH (autovacuum_enabled = false);

There is no statistics for the new table yet:

=> SELECT reltuples, relpages, relallvisible

FROM pg_class WHERE relname = 'flights_copy';

reltuples | relpages | relallvisible

−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−−−−−−

−1 | 0 | 0

(1 row)

1 backend/commands/analyze.c, do_analyze_rel function
2 backend/commands/cluster.c, copy_table_data function
3 backend/catalog/heap.c, index_update_stats function
4 backend/access/heap/vacuumlazy.c, heap_vacuum_rel function
5 backend/commands/analyze.c, std_typanalyze function
6 backend/commands/analyze.c, acquire_sample_rows function

backend/utils/misc/sampling.c

311

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/commands/analyze.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/commands/cluster.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/catalog/heap.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/heap/vacuumlazy.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/commands/analyze.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/commands/analyze.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/utils/misc/sampling.c;hb=REL_14_STABLE

Chapter 17 Statistics

The value reltuples = −1v. �� is used to differentiate between a table that has not been

analyzed yet and a really empty table without any rows.

It is highly likely that some rows will get inserted into the table right after its cre-

ation. So being unaware of the current state of things, the planner assumes that

the table contains 10 pages:

=> EXPLAIN SELECT * FROM flights_copy;

QUERY PLAN

−−−

Seq Scan on flights_copy (cost=0.00..14.10 rows=410 width=170)

(1 row)

Thenumber of rows is estimated based on the size of a single row,which is shown in

the plan as width. Row width is typically an average value calculated during analy-

sis, but since no statistics have been collected yet, here it is just an approximation

based on the column data types.1

Now let’s copy the data from the flights table and perform the analysis:

=> INSERT INTO flights_copy SELECT * FROM flights;

INSERT 0 214867

=> ANALYZE flights_copy;

The collected statistics reflects the actual number of rows (the table size is small

enough for the analyzer to gather statistics on all the data):

=> SELECT reltuples, relpages, relallvisible

FROM pg_class WHERE relname = 'flights_copy';

reltuples | relpages | relallvisible

−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−−−−−−

214867 | 2624 | 0

(1 row)

The relallvisible value is used to estimate the costp. ��� of an index-only scan. This value

is updated by ������:

=> VACUUM flights_copy;

1 backend/access/table/tableam.c, table_block_relation_estimate_size function

312

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/table/tableam.c;hb=REL_14_STABLE

17.1 Basic Statistics

=> SELECT relallvisible FROM pg_class WHERE relname = 'flights_copy';

relallvisible

−−−−−−−−−−−−−−−

2624

(1 row)

Now let’s double the number of rows without updating statistics and check the

cardinality estimation in the query plan:

=> INSERT INTO flights_copy SELECT * FROM flights;

=> SELECT count(*) FROM flights_copy;

count

−−−−−−−−

429734

(1 row)

=> EXPLAIN SELECT * FROM flights_copy;

QUERY PLAN

−−−

Seq Scan on flights_copy (cost=0.00..9545.34 rows=429734 width=63)

(1 row)

Despite the outdated pg_class data, the estimation turns out to be accurate:

=> SELECT reltuples, relpages

FROM pg_class WHERE relname = 'flights_copy';

reltuples | relpages

−−−−−−−−−−−+−−−−−−−−−−

214867 | 2624

(1 row)

The thing is that if the planner sees a gap between relpages and the actual file size,

it can scale the reltuples value to improve estimation accuracy.1 Since the file size

has doubled as compared to relpages, the planner adjusts the estimated number of

rows, assuming that data density remains the same:

=> SELECT reltuples *

(pg_relation_size('flights_copy') / 8192) / relpages AS tuples

FROM pg_class WHERE relname = 'flights_copy';

1 backend/access/table/tableam.c, table_block_relation_estimate_size function

313

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/table/tableam.c;hb=REL_14_STABLE

Chapter 17 Statistics

tuples

−−−−−−−−

429734

(1 row)

Naturally, such an adjustmentmay not always work (for example, if we delete some

rows, the estimation will remain the same), but in some cases it allows the planner

to hold on until significant changes trigger the next analysis run.

17.2 NULL Values

Frowned upon by theoreticians,1 ���� values still play an important role in rela-

tional databases: they provide a convenient way to reflect the fact that a value is

either unknown or does not exist.

However, a special value demands special treatment. Apart from theoretical incon-

sistencies, there are also multiple practical challenges that have to be taken into

account. Regular Boolean logic is replaced by the three-valued one, so ��� �� be-

haves unexpectedly. It is unclear whether ���� values should be treated as greater

than or less than regular values (hence the ����� ����� and ����� ���� clauses for

sorting). It is not quite obvious whether ���� values must be taken into account

by aggregate functions. Strictly speaking, ���� values are not values at all, so the

planner requires additional information to process them.

Apart from the simplest basic statistics collected at the relation level, the analyzer

also gathers statistics for each column of the relation. This data is stored in the

pg_statistic table of the system catalog,2 but you can also access it via the pg_stats

view, which provides this information in a more convenient format.

The fraction of ���� values belongs to column-level statistics; calculated during the

analysis, it is shown as the null_frac attribute.

For example, when searching for the flights that have not departed yet, we can rely

on their departure times being undefined:

=> EXPLAIN SELECT * FROM flights WHERE actual_departure IS NULL;

1 sigmodrecord.org/publications/sigmodRecord/0809/p20.date.pdf
2 include/catalog/pg_statistic.h

314

https://sigmodrecord.org/publications/sigmodRecord/0809/p20.date.pdf
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/include/catalog/pg_statistic.h;hb=REL_14_STABLE

17.3 Distinct Values

QUERY PLAN

−−−

Seq Scan on flights (cost=0.00..4772.67 rows=16702 width=63)

Filter: (actual_departure IS NULL)

(2 rows)

To estimate the result, the planner multiplies the total number of rows by the frac-

tion of ���� values:

=> SELECT round(reltuples * s.null_frac) AS rows

FROM pg_class

JOIN pg_stats s ON s.tablename = relname

WHERE s.tablename = 'flights'

AND s.attname = 'actual_departure';

rows

−−−−−−−

16702

(1 row)

And here is the actual row count:

=> SELECT count(*) FROM flights WHERE actual_departure IS NULL;

count

−−−−−−−

16348

(1 row)

17.3 Distinct Values

The n_distinct field of the pg_stats view shows the number of distinct values in a

column.

If n_distinct is negative, its absolute value denotes the fraction of distinct values

in a column rather than their actual count. For example, −1 indicates that all col-
umn values are unique, while −3 means that each value appears in three rows on

average. The analyzer uses fractions if the estimated number of distinct values ex-

ceeds 10% of the total row count; in this case, further data updates are unlikely to

change this ratio.1

1 backend/commands/analyze.c, compute_distinct_stats function

315

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/commands/analyze.c;hb=REL_14_STABLE

Chapter 17 Statistics

values

fr
eq

ue
nc
y

null_frac

n_distinct

If uniform data distribution is expected, the number of distinct values is used in-

stead. For example, when estimating the cardinality of the “column = expression”

condition, the planner assumes that the expression can take any column value with

equal probability if its exact value is unknown at the planning stage:1

=> EXPLAIN SELECT *

FROM flights

WHERE departure_airport = (

SELECT airport_code FROM airports WHERE city = 'Saint Petersburg'

);

QUERY PLAN

−−−

Seq Scan on flights (cost=30.56..5340.40 rows=2066 width=63)

Filter: (departure_airport = $0)

InitPlan 1 (returns $0)

−> Seq Scan on airports_data ml (cost=0.00..30.56 rows=1 wi...

Filter: ((city −>> lang()) = 'Saint Petersburg'::text)

(5 rows)

Here the InitPlan node is executed only once, and the calculated value is used in

the main plan.

1 backend/utils/adt/selfuncs.c, var_eq_non_const function

316

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/utils/adt/selfuncs.c;hb=REL_14_STABLE

17.4 Most Common Values

=> SELECT round(reltuples / s.n_distinct) AS rows

FROM pg_class

JOIN pg_stats s ON s.tablename = relname

WHERE s.tablename = 'flights'

AND s.attname = 'departure_airport';

rows

−−−−−−

2066

(1 row)

If the estimated number of distinct values is incorrect (because a limited number

of rows have been analyzed), it can be overridden at the column level:

ALTER TABLE ...

ALTER COLUMN ...

SET (n_distinct = ...);

If all data always had uniform distribution, this information (coupledwithminimal

and maximal values) would be sufficient. However, for non-uniform distribution

(which is much more common in practice), such estimation is inaccurate:

=> SELECT min(cnt), round(avg(cnt)) avg, max(cnt)

FROM (

SELECT departure_airport, count(*) cnt

FROM flights

GROUP BY departure_airport

) t;

min | avg | max

−−−−−+−−−−−−+−−−−−−−

113 | 2066 | 20875

(1 row)

17.4 Most Common Values

If data distribution is non-uniform, the estimation is fine-tuned based on statistics

on most common values (���) and their frequencies. The pg_stats view displays

these arrays in themost_common_vals andmost_common_freqs fields, respectively.

Here is an example of such statistics on various types of aircraft:

317

Chapter 17 Statistics

values

fr
eq

ue
nc
y

null_frac

[most_common_vals]

[m
os
t_
co
m
m
on

_f
re
qs

]

=> SELECT most_common_vals AS mcv,

left(most_common_freqs::text,60) || '...' AS mcf

FROM pg_stats

WHERE tablename = 'flights' AND attname = 'aircraft_code' \gx

−[RECORD 1]−−

mcv | {CN1,CR2,SU9,321,733,763,319,773}

mcf | {0.27886668,0.27266666,0.26176667,0.057166666,0.037666667,0....

To estimate the selectivity of the “column = value” condition, it is enough to

find this value in the most_common_vals array and take its frequency from the

most_common_freqs array element with the same index:1

=> EXPLAIN SELECT * FROM flights WHERE aircraft_code = '733';

QUERY PLAN

−−

Seq Scan on flights (cost=0.00..5309.84 rows=8093 width=63)

Filter: (aircraft_code = '733'::bpchar)

(2 rows)

1 backend/utils/adt/selfuncs.c, var_eq_const function

318

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/utils/adt/selfuncs.c;hb=REL_14_STABLE

17.4 Most Common Values

=> SELECT round(reltuples * s.most_common_freqs[

array_position((s.most_common_vals::text::text[]),'733')

])

FROM pg_class

JOIN pg_stats s ON s.tablename = relname

WHERE s.tablename = 'flights'

AND s.attname = 'aircraft_code';

round

−−−−−−−

8093

(1 row)

It is obvious that such estimation will be close to the actual value:

=> SELECT count(*) FROM flights WHERE aircraft_code = '733';

count

−−−−−−−

8263

(1 row)

The ��� list is also used to estimate selectivity of inequality conditions. For ex-

ample, a condition like “column < value” requires the analyzer to search through

most_common_vals for all the values that are smaller than the target one and sum

up the corresponding frequencies listed inmost_common_freqs.1

M�� statistics work best when distinct values are not toomany. Themaximum size

of arrays is defined by the 100default_statistics_target parameter, which also limits the

number of rows to be randomly sampled for the purpose of analysis.

In some cases, it makes sense to increase the default parameter value, thus ex-

panding the ��� list and improving the accuracy of estimations. You can do it at

the column level:

ALTER TABLE ...

ALTER COLUMN ...

SET STATISTICS ...;

The sample size will also grow, but only for the specified table.

1 backend/utils/adt/selfuncs.c, scalarineqsel function

319

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/utils/adt/selfuncs.c;hb=REL_14_STABLE

Chapter 17 Statistics

Since the ��� array stores actual values, it may take quite a lot of space. To keep

the pg_statistic size under control and avoid loading the planner with useless work,

values that are larger than � k� are excluded from analysis and statistics. But since

such large values are likely to be unique, they would probably not make it into

most_common_vals anyway.

17.5 Histogram

If distinct values are too many to be stored in an array, Postgre��� employs a

histogram. In this case, values are distributed between several buckets of the his-

togram. The number of buckets is also limited by the default_statistics_target pa-

rameter.

The bucket width is selected in such a way that each bucket gets approximately the

same number of values (this property is reflected in the diagram by the equality of

areas of big hatched rectangles). The values included into ��� lists are not taken

into account. As a result, the cumulative frequency of values in each bucket equals
1

number of buckets
.

The histogram is stored in the histogram_bounds field of the pg_stats view as an

array of buckets’ boundary values:

=> SELECT left(histogram_bounds::text,60) || '...' AS hist_bounds

FROM pg_stats s

WHERE s.tablename = 'boarding_passes' AND s.attname = 'seat_no';

hist_bounds

−−−

{10B,10E,10F,10F,11H,12B,13B,14B,14H,15G,16B,17B,17H,19B,19B...

(1 row)

Combined with the ��� list, the histogram is used for operations like estimating

the selectivity of greater than and less than conditions.1 For example, let’s take a

look at the number of boarding passes issued for back rows:

1 backend/utils/adt/selfuncs.c, ineq_histogram_selectivity function

320

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/utils/adt/selfuncs.c;hb=REL_14_STABLE

17.5 Histogram

values

fr
eq

ue
nc
y

null_frac

[mcv]

[m
cf
]

[histogram_bounds]

=> EXPLAIN SELECT * FROM boarding_passes WHERE seat_no > '30B';

QUERY PLAN

−−−

Seq Scan on boarding_passes (cost=0.00..157350.10 rows=2983242 ...

Filter: ((seat_no)::text > '30B'::text)

(2 rows)

I have intentionally selected the seat number that lies right on the boundary be-

tween two histogram buckets.

The selectivity of this condition will be estimated at N

number of buckets
, where N is the

number of buckets holding the values that satisfy the condition (that is, the ones

located to the right of the specified value). It must also be taken into account that

���s are not included into the histogram.

Incidentally, ���� values do not appear in the histogram either, but the seat_no

column contains no such values anyway:

=> SELECT s.null_frac FROM pg_stats s

WHERE s.tablename = 'boarding_passes' AND s.attname = 'seat_no';

321

Chapter 17 Statistics

null_frac

−−−−−−−−−−−

0

(1 row)

First, let’s find the fraction of ���s that satisfy the condition:

=> SELECT sum(s.most_common_freqs[

array_position((s.most_common_vals::text::text[]),v)

])

FROM pg_stats s, unnest(s.most_common_vals::text::text[]) v

WHERE s.tablename = 'boarding_passes' AND s.attname = 'seat_no'

AND v > '30B';

sum

−−−−−−−−−−−−

0.21226665

(1 row)

The overall ��� share (ignored by the histogram) is:

=> SELECT sum(s.most_common_freqs[

array_position((s.most_common_vals::text::text[]),v)

])

FROM pg_stats s, unnest(s.most_common_vals::text::text[]) v

WHERE s.tablename = 'boarding_passes' AND s.attname = 'seat_no';

sum

−−−−−−−−−−−−

0.67816657

(1 row)

Since the values that conform to the specified condition take exactly 𝑁 buckets

(out of ��� buckets possible), we get the following estimation:

=> SELECT round(reltuples * (

0.21226665 -- MCV share

+ (1 - 0.67816657 - 0) * (51 / 100.0) -- histogram share

))

FROM pg_class

WHERE relname = 'boarding_passes';

round

−−−−−−−−−

2983242

(1 row)

322

17.5 Histogram

values

fr
eq

ue
nc
y

null_frac

x

In the generic case of non-boundary values, the planner applies linear interpola-

tion to take into account the fraction of the bucket that contains the target value.

Here is the actual number of back seats:

=> SELECT count(*) FROM boarding_passes WHERE seat_no > '30B';

count

−−−−−−−−−

2993735

(1 row)

As you increase the default_statistics_target value, estimation accuracy may im-

prove, but as our example shows, the histogram combinedwith the��� list usually

gives good results even if the column contains many unique values:

=> SELECT n_distinct FROM pg_stats

WHERE tablename = 'boarding_passes' AND attname = 'seat_no';

n_distinct

−−−−−−−−−−−−

461

(1 row)

It makes sense to improve estimation accuracy only if it leads to better planning.

Increasing the default_statistics_target value without giving it much thought may

323

Chapter 17 Statistics

slow down planning and analysis without bringing any benefits in return. That

said, reducing this parameter value (down to zero) can lead to a bad plan choice,

even though it does speed up planning and analysis. Such savings are usually un-

justified.

17.6 Statistics for Non-Scalar Data Types

For non-scalar data types, Postgre��� can gather statistics not only on the distri-

bution of values, but also on the distribution of elements used to construct these

values. It improves planning accuracy when you query columns that do not con-

form to the first normal form.

• Themost_common_elems andmost_common_elem_freqs arrays show the list of

the most common elements and the frequency of their usage.

These statistics are collected and used to estimate selectivity of operations on

arrays1 and tsvector2 data types.

• The elem_count_histogram array shows the histogram of the number of distinct

elements in a value.

This data is collected and used for estimating selectivity of operations on ar-

rays only.

• For range types, Postgre��� builds distribution histograms for range length

and lower and upper boundaries of the range. These histograms are used for

estimating selectivity of various operations on these types,3 but the pg_stats

view does not display them.

Similar statistics are also collected for multirangev. �� data types.4

1 postgresql.org/docs/14/arrays.html

backend/utils/adt/array_typanalyze.c

backend/utils/adt/array_selfuncs.c
2 postgresql.org/docs/14/datatype-textsearch.html

backend/tsearch/ts_typanalyze.c

backend/tsearch/ts_selfuncs.c
3 postgresql.org/docs/14/rangetypes.html

backend/utils/adt/rangetypes_typanalyze.c

backend/utils/adt/rangetypes_selfuncs.c
4 backend/utils/adt/multirangetypes_selfuncs.c

324

https://postgresql.org/docs/14/arrays.html
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/utils/adt/array_typanalyze.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/utils/adt/array_selfuncs.c;hb=REL_14_STABLE
https://postgresql.org/docs/14/datatype-textsearch.html
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/tsearch/ts_typanalyze.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/tsearch/ts_selfuncs.c;hb=REL_14_STABLE
https://postgresql.org/docs/14/rangetypes.html
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/utils/adt/rangetypes_typanalyze.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/utils/adt/rangetypes_selfuncs.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/utils/adt/multirangetypes_selfuncs.c;hb=REL_14_STABLE

17.7 Average Field Width

17.7 Average Field Width

The avg_width field of the pg_stats view shows the average size of values stored in

a column. Naturally, for types like integer or char(3) this size is always the same,

but for data types of variable length, such as text, it can vary a lot from column to

column:

=> SELECT attname, avg_width FROM pg_stats

WHERE (tablename, attname) IN (VALUES

('tickets', 'passenger_name'), ('ticket_flights','fare_conditions')

);

attname | avg_width

−−−−−−−−−−−−−−−−−+−−−−−−−−−−−

fare_conditions | 8

passenger_name | 16

(2 rows)

This statistic is used to estimate the amount of memory required for operations

like sorting or hashing.

17.8 Correlation

The correlationfield of the pg_stats view shows the correlation between the physical

order of data and the logical order defined by comparison operations. If values

are stored strictly in ascending order, their correlation will be close to 1; if they

are arranged in descending order, their correlation will be close to −1. The more

chaotic is data distribution on disk, the closer is the correlation to zero.

=> SELECT attname, correlation

FROM pg_stats WHERE tablename = 'airports_data'

ORDER BY abs(correlation) DESC;

attname | correlation

−−−−−−−−−−−−−−+−−−−−−−−−−−−−

coordinates |

airport_code | −0.21120238

city | −0.1970127

airport_name | −0.18223621

timezone | 0.17961165

(5 rows)

325

Chapter 17 Statistics

Note that this statistic is not gathered for the coordinates column: less than and

greater than operators are not defined for the point type.

Correlation is used for cost estimation of index scansp. ��� .

17.9 Expression Statistics

Column-level statistics can be used only if either the left or the right part of the

comparison operation refers to the column itself and does not contain any expres-

sions. For example, the planner cannot predict how computing a function of a

column will affect statistics, so for conditions like “function-call = constant” the

selectivity is always estimated at �.�%:1

=> EXPLAIN SELECT * FROM flights

WHERE extract(

month FROM scheduled_departure AT TIME ZONE 'Europe/Moscow'

) = 1;

QUERY PLAN

−−−

Seq Scan on flights (cost=0.00..6384.17 rows=1074 width=63)

Filter: (EXTRACT(month FROM (scheduled_departure AT TIME ZONE ...

(2 rows)

=> SELECT round(reltuples * 0.005)

FROM pg_class WHERE relname = 'flights';

round

−−−−−−−

1074

(1 row)

The planner knows nothing about semantics of functions, even of standard ones.

Our general knowledge suggests that the flights performed in January will make

roughly 1

12
of the total number of flights, which exceeds the projected value by one

order of magnitude.

To improve the estimation, we have to collect expression statistics rather than rely

on the column-level one. There are two ways to do it.

1 backend/utils/adt/selfuncs.c, eqsel function

326

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/utils/adt/selfuncs.c;hb=REL_14_STABLE

17.9 Expression Statistics

Extended Expression Statistics v. ��

The first option is to use extended expression statistics.1 Such statistics are not col-

lected by default; you have to manually create the corresponding database object

by running the ������ ���������� command:

=> CREATE STATISTICS flights_expr ON (extract(

month FROM scheduled_departure AT TIME ZONE 'Europe/Moscow'

))

FROM flights;

Once the data is gathered, the estimation accuracy improves:

=> ANALYZE flights;

=> EXPLAIN SELECT * FROM flights

WHERE extract(

month FROM scheduled_departure AT TIME ZONE 'Europe/Moscow'

) = 1;

QUERY PLAN

−−−

Seq Scan on flights (cost=0.00..6384.17 rows=16667 width=63)

Filter: (EXTRACT(month FROM (scheduled_departure AT TIME ZONE ...

(2 rows)

For the collected statistics to be applied, the query must specify the expression in

exactly the same form that was used by the ������ ���������� command.

The size limit for extended statistics v. ��can be adjusted separately, by running the

����� ���������� command. For example:

=> ALTER STATISTICS flights_expr SET STATISTICS 42;

All themetadata related to extended statistics is stored in the pg_statistic_ext table

of the system catalog, while the collected data itself resides in a separate table

called pg_statistic_ext_data v. ��. This separation is used to implement access control

for sensitive information.

Extended expression statistics available to a particular user can be displayed in a

more convenient format in a separate view:

1 postgresql.org/docs/14/planner-stats#PLANNER-STATS-EXTENDED.html

backend/statistics/README

327

https://postgresql.org/docs/14/planner-stats#PLANNER-STATS-EXTENDED.html
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/statistics/README;hb=REL_14_STABLE

Chapter 17 Statistics

=> SELECT left(expr,50) || '...' AS expr,

null_frac, avg_width, n_distinct,

most_common_vals AS mcv,

left(most_common_freqs::text,50) || '...' AS mcf,

correlation

FROM pg_stats_ext_exprs

WHERE statistics_name = 'flights_expr' \gx

−[RECORD 1]−−

expr | EXTRACT(month FROM (scheduled_departure AT TIME ZO...

null_frac | 0

avg_width | 8

n_distinct | 12

mcv | {8,9,12,3,1,5,6,7,11,10,4,2}

mcf | {0.12053333,0.11326667,0.0802,0.07976667,0.0775666...

correlation | 0.08355749

Statistics for Expression Indexes

Another way to improve cardinality estimation is to use special statistics collected

for expression indexesp. ��� ; these statistics are gathered automatically when such an

index is created, just like it is done for a table. If the index is really needed, this

approach turns out to be very convenient.

=> DROP STATISTICS flights_expr;

=> CREATE INDEX ON flights(extract(

month FROM scheduled_departure AT TIME ZONE 'Europe/Moscow'

));

=> ANALYZE flights;

=> EXPLAIN SELECT * FROM flights

WHERE extract(

month FROM scheduled_departure AT TIME ZONE 'Europe/Moscow'

) = 1;

QUERY PLAN

−−−

Bitmap Heap Scan on flights (cost=324.86..3247.92 rows=17089 wi...

Recheck Cond: (EXTRACT(month FROM (scheduled_departure AT TIME...

−> Bitmap Index Scan on flights_extract_idx (cost=0.00..320.5...

Index Cond: (EXTRACT(month FROM (scheduled_departure AT TI...

(4 rows)

328

17.10 Multivariate Statistics

Statistics on expression indexes are stored in the same way as statistics on tables.

For example, you can get the number of distinct values by specifying the index

name as tablename when querying pg_stats:

=> SELECT n_distinct FROM pg_stats

WHERE tablename = 'flights_extract_idx';

n_distinct

−−−−−−−−−−−−

12

(1 row)

You can adjust the accuracy v. ��of index-related statistics using the ����� ����� com-

mand. If you do not know the column name that corresponds to the indexed ex-

pression, you have to first find it out. For example:

=> SELECT attname FROM pg_attribute

WHERE attrelid = 'flights_extract_idx'::regclass;

attname

−−−−−−−−−

extract

(1 row)

=> ALTER INDEX flights_extract_idx

ALTER COLUMN extract SET STATISTICS 42;

17.10 Multivariate Statistics

It is also possible to collectmultivariate statistics, which span several table columns.

As a prerequisite, you have to manually create the corresponding extended statis-

tics using the ������ ���������� command.

Postgre��� implements three types of multivariate statistics.

Functional Dependencies Between Columns v. ��

If values in one column depend (fully or partially) on values in another column

and the filter conditions include both these columns, cardinality will be underes-

timated.

329

Chapter 17 Statistics

Let’s consider a query with two filter conditions:

=> SELECT count(*) FROM flights

WHERE flight_no = 'PG0007' AND departure_airport = 'VKO';

count

−−−−−−−

396

(1 row)

The value is hugely underestimated:

=> EXPLAIN SELECT * FROM flights

WHERE flight_no = 'PG0007' AND departure_airport = 'VKO';

QUERY PLAN

−−−

Bitmap Heap Scan on flights (cost=10.49..816.84 rows=15 width=63)

Recheck Cond: (flight_no = 'PG0007'::bpchar)

Filter: (departure_airport = 'VKO'::bpchar)

−> Bitmap Index Scan on flights_flight_no_scheduled_departure_key

(cost=0.00..10.49 rows=276 width=0)

Index Cond: (flight_no = 'PG0007'::bpchar)

(6 rows)

It is a well-known problem of correlated predicates. The planner assumes that pred-

icates do not depend on each other, so the overall selectivity is estimated at the

product of selectivities of filter conditions combined by logical ���p. ��� . The plan

above clearly illustrates this issue: the value estimated by the Bitmap Index Scan

node for the condition on the flight_no column is significantly reduced once the

Bitmap Heap Scan node filters the results by the condition on the departure_airport

column.

However,we do understand that airports are unambiguously defined by flight num-

bers: the second condition is virtually redundant (unless there is a mistake in the

airport name, of course). In such cases, we can improve the estimation by applying

extended statistics on functional dependencies.

Let’s create an extended statistic on the functional dependency between the two

columns:

=> CREATE STATISTICS flights_dep(dependencies)

ON flight_no, departure_airport FROM flights;

330

17.10 Multivariate Statistics

The next analysis run gathers this statistic, and the estimation improves:

=> ANALYZE flights;

=> EXPLAIN SELECT * FROM flights

WHERE flight_no = 'PG0007'

AND departure_airport = 'VKO';

QUERY PLAN

−−−

Bitmap Heap Scan on flights (cost=10.57..819.51 rows=277 width=63)

Recheck Cond: (flight_no = 'PG0007'::bpchar)

Filter: (departure_airport = 'VKO'::bpchar)

−> Bitmap Index Scan on flights_flight_no_scheduled_departure_key

(cost=0.00..10.50 rows=277 width=0)

Index Cond: (flight_no = 'PG0007'::bpchar)

(6 rows)

The collected statistics is stored in the system catalog and can be accessed like this:

=> SELECT dependencies

FROM pg_stats_ext WHERE statistics_name = 'flights_dep';

dependencies

−−

{"2 => 5": 1.000000, "5 => 2": 0.010200}

(1 row)

Here � and � are column numbers stored in the pg_attribute table, whereas the

corresponding values define the degree of functional dependency: from � (no de-

pendency) to � (values in the second columns fully depend on values in the first

column).

Multivariate Number of Distinct Values v. ��

Statistics on the number of unique combinations of values stored in different

columns improves cardinality estimation of a ����� �� operation performed on

several columns.

For example, here the estimated number of possible pairs of departure and arrival

airports is the square of the total number of airports; however, the actual value is

much smaller, as not all the pairs are connected by direct flights:

331

Chapter 17 Statistics

=> SELECT count(*)

FROM (

SELECT DISTINCT departure_airport, arrival_airport FROM flights

) t;

count

−−−−−−−

618

(1 row)

=> EXPLAIN SELECT DISTINCT departure_airport, arrival_airport

FROM flights;

QUERY PLAN

−−

HashAggregate (cost=5847.01..5955.16 rows=10816 width=8)

Group Key: departure_airport, arrival_airport

−> Seq Scan on flights (cost=0.00..4772.67 rows=214867 width=8)

(3 rows)

Let’s define and collect an extended statistic on distinct values:

=> CREATE STATISTICS flights_nd(ndistinct)

ON departure_airport, arrival_airport FROM flights;

=> ANALYZE flights;

The cardinality estimation has improved:

=> EXPLAIN SELECT DISTINCT departure_airport, arrival_airport

FROM flights;

QUERY PLAN

−−

HashAggregate (cost=5847.01..5853.19 rows=618 width=8)

Group Key: departure_airport, arrival_airport

−> Seq Scan on flights (cost=0.00..4772.67 rows=214867 width=8)

(3 rows)

You can view the collected statistic in the system catalog:

=> SELECT n_distinct

FROM pg_stats_ext WHERE statistics_name = 'flights_nd';

n_distinct

−−−−−−−−−−−−−−−

{"5, 6": 618}

(1 row)

332

17.10 Multivariate Statistics

Multivariate MCV Lists v. ��

If the distribution of values is non-uniform, it may be not enough to rely on the

functional dependency alone, as the estimation accuracy will highly depend on a

particular pair of values. For example, the planner underestimates the number of

flights performed by Boeing ��� from Sheremetyevo airport:

=> SELECT count(*) FROM flights

WHERE departure_airport = 'SVO' AND aircraft_code = '733';

count

−−−−−−−

2037

(1 row)

=> EXPLAIN SELECT * FROM flights

WHERE departure_airport = 'SVO' AND aircraft_code = '733';

QUERY PLAN

−−−

Seq Scan on flights (cost=0.00..5847.00 rows=736 width=63)

Filter: ((departure_airport = 'SVO'::bpchar) AND (aircraft_cod...

(2 rows)

In this case, you can improve the estimation by collecting statistics onmultivariate

��� lists:1

=> CREATE STATISTICS flights_mcv(mcv)

ON departure_airport, aircraft_code FROM flights;

=> ANALYZE flights;

The new cardinality estimation is much more accurate:

=> EXPLAIN SELECT * FROM flights

WHERE departure_airport = 'SVO' AND aircraft_code = '733';

QUERY PLAN

−−−

Seq Scan on flights (cost=0.00..5847.00 rows=1927 width=63)

Filter: ((departure_airport = 'SVO'::bpchar) AND (aircraft_cod...

(2 rows)

1 backend/statistics/README.mcv

backend/statistics/mcv.c

333

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/statistics/README.mcv;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/statistics/mcv.c;hb=REL_14_STABLE

Chapter 17 Statistics

To get this estimation, the planner relies on the frequency values stored in the

system catalog:

=> SELECT values, frequency

FROM pg_statistic_ext stx

JOIN pg_statistic_ext_data stxd ON stx.oid = stxd.stxoid,

pg_mcv_list_items(stxdmcv) m

WHERE stxname = 'flights_mcv'

AND values = '{SVO,773}';

values | frequency

−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−

{SVO,773} | 0.005266666666666667

(1 row)

Just like a regular ��� list, a multivariate list holds100 default_statistics_target values

(if this parameter is also set at the column level, the largest of its values is used).

If required, you can also change the size of the list,v. �� like it is done for extended

expression statistics:

ALTER STATISTICS ... SET STATISTICS ...;

In all these examples, I have used only two columns, but you can collect multivari-

ate statistics on a larger number of columns too.

To combine statistics of several types in one object, you can provide a comma-

separated list of these types in its definition. If no type is specified, Postgre���

will collect statistics of all the possible types for the specified columns.

Apart from the actual column names,v. �� multivariate statistics can also use arbitrary

expressions, just like expression statistics.

334

18
Table Access Methods

18.1 Pluggable Storage Engines

The data layout used by Postgre��� is neither the only possible nor the best one for

all load types. Following the idea of extensibility, Postgre��� allows v. ��you to create

and plug in various table access methods (pluggable storage engines), but there is

only one available out of the box at the moment:

=> SELECT amname, amhandler FROM pg_am WHERE amtype = 't';

amname | amhandler

−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−

heap | heap_tableam_handler

(1 row)

You can specify the engine to use when creating a table (������ ����� ... �����);

otherwise, the default engine listed in the heapdefault_table_access_method parameter

will be applied.

For the Postgre��� core to work with various engines in the same way, table ac-

cess methods must implement a special interface.1 The function specified in the

amhandler column returns the interface structure2 that contains all the informa-

tion required by the core.

The following core components can be used by all table access methods:

• transaction manager, including ���� and snapshot isolation support

• buffer manager

1 postgresql.org/docs/14/tableam.html
2 include/access/tableam.h

335

https://postgresql.org/docs/14/tableam.html
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/include/access/tableam.h;hb=REL_14_STABLE

Chapter 18 Table Access Methods

• �/� subsystem

• �����

• optimizer and executor

• index support

These components always remain at the disposal of the engine, even if it does not

use them all.

In their turn, engines define:

• tuple format and data structure

• table scan implementation and cost estimation

• implementation of insert, delete, update, and lock operations

• visibility rules

• vacuum and analysis procedures

Historically, Postgre��� used a single built-in data storage without any proper pro-

gramming interface, so now it is very hard to come upwith a good design that takes

all the specifics of the standard engine into account and does not interfere with

other methods.

For example, it is still unclear how to deal with the ���. New access methods may need to

log their own operations that the core is unaware of. The existing generic ��� mechanism1

is usually a bad choice, as it incurs too much overhead. You can add yet another interface

for handling new types of ��� entries, but then crash recovery will depend on external

code, which is highly undesirable. The only plausible solution so far is patching the core

for each particular engine.

For this reason, I did not strive to provide any strict distinction between table ac-

cess methods and the core. Many features described in the previous parts of the

book formally belong to the heap access method rather than to the core itself. This

method is likely to always remain the ultimate standard engine for Postgre���,

while other methods will fill separate niches to address challenges of specific load

types.

1 postgresql.org/docs/14/generic-wal.html

336

https://postgresql.org/docs/14/generic-wal.html

18.2 Sequential Scans

Of all the new engines that are currently being developed, I would like to mention

the following:

Zheap is aimed at fighting table bloating.1 It implements in-place row updates

and moves historic ����-related data into a separate undo storage. Such an

engine will be useful for loads that involve frequent data updates.

Zheap architecture will seem familiar to Oracle users, although it does have

some nuances (for example, the interface of index access methods p. ���does not

allow creating indexes with their own versioning).

Zedstore implements columnar storage,2 which is likely to be most efficient with

���� queries.

The stored data is structured as a �-tree of tuple ��s; each column is stored in

its own �-tree associated with themain one. In the future, it might be possible

to store several columns in one �-tree, thus getting a hybrid storage.

18.2 Sequential Scans

The storage engine defines the physical layout of table data and provides an access

method to it. The only supported method is a sequential scan, which reads the file

(or files) of the table’s main fork in full. In each read page, the visibility p. ��of each

tuple is checked; those tuples that do not satisfy the query are filtered out.

table page

a tuple
to be filtered out

1 github.com/EnterpriseDB/zheap
2 github.com/greenplum-db/postgres/tree/zedstore

337

https://github.com/EnterpriseDB/zheap
https://github.com/greenplum-db/postgres/tree/zedstore

Chapter 18 Table Access Methods

A scanning process goes through the buffer cache;p. ��� to ensure that large tables do

not oust useful data, a small-sized buffer ring is employed. Other processes that

are scanning the same table join this buffer ring, thus avoiding extra disk reads;

such scans are called synchronized. Thus, scanning does not always have to begin

at the start of the file.

Sequential scanning is the most efficient way to read the whole table or the best

part of it. In other words, sequential scans bring the most value when the selec-

tivity is low. (If the selectivity is high, meaning that the query has to select only a

few rows, it is preferable to use an indexp. ��� .)

Cost Estimation

In the query execution plan, a sequential scan is represented by the Seq Scan node:

=> EXPLAIN SELECT *

FROM flights;

QUERY PLAN

−−

Seq Scan on flights (cost=0.00..4772.67 rows=214867 width=63)

(1 row)

The estimated number of rows is provided as part of the basic statistics:

=> SELECT reltuples FROM pg_class WHERE relname = 'flights';

reltuples

−−−−−−−−−−−

214867

(1 row)

When estimating the cost, the optimizer takes the following two components into

account: disk �/� and ��� resources.1

I/� cost is calculated by multiplying the number of pages in a table and the cost

of reading a single page assuming that pages are being read sequentially. When

1 backend/optimizer/path/costsize.c, cost_seqscan function

338

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/optimizer/path/costsize.c;hb=REL_14_STABLE

18.2 Sequential Scans

the buffer manager requests a page, the operating system actually reads more

data from disk, so several subsequent pages are highly likely to be found in

the operating system cache. For this reason, the cost of reading a single page

using sequential scanning (which the planner estimates at 1seq_page_cost) is

lower than the random access cost (defined by the 4random_page_cost value).

The default settings work well for ���s; if you are using ���s, it makes sense

to significantly reduce the random_page_cost value (the seq_page_cost param-

eter is usually left as is, serving as a reference value). Since the optimal ratio

between these parameters depends on the hardware, they are usually set at

the tablespace level (����� ���������� ... ���).

=> SELECT relpages,

current_setting('seq_page_cost') AS seq_page_cost,

relpages * current_setting('seq_page_cost')::real AS total

FROM pg_class WHERE relname = 'flights';

relpages | seq_page_cost | total

−−−−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−

2624 | 1 | 2624

(1 row)

These calculations clearly show the consequences p. ���of table bloating caused by

untimely vacuuming: the larger the main fork of the table, the more pages

have to be scanned, regardless of the number of live tuples they contain.

C�� resource estimation comprises the costs of processing each tuple (which the

planner estimates at 0.01cpu_tuple_cost):

=> SELECT reltuples,

current_setting('cpu_tuple_cost') AS cpu_tuple_cost,

reltuples * current_setting('cpu_tuple_cost')::real AS total

FROM pg_class WHERE relname = 'flights';

reltuples | cpu_tuple_cost | total

−−−−−−−−−−−+−−−−−−−−−−−−−−−−+−−−−−−−−−

214867 | 0.01 | 2148.67

(1 row)

The sum of these two estimates represents the total cost of the plan. The

startup cost is zero because sequential scans have no prerequisites.

339

Chapter 18 Table Access Methods

If the scanned table needs to be filtered, the applied filter conditions appear in

the plan under the Filter section of the Seq Scan node. The estimatedp. ��� row count

depends on the selectivity of these conditions, while the cost estimation includes

the related computation expenses.

The ������� ������� command displays both the actual number of returned rows

and the number of rows that have been filtered out:

=> EXPLAIN (analyze, timing off, summary off)

SELECT * FROM flights

WHERE status = 'Scheduled';

QUERY PLAN

−−

Seq Scan on flights

(cost=0.00..5309.84 rows=15383 width=63)

(actual rows=15383 loops=1)

Filter: ((status)::text = 'Scheduled'::text)

Rows Removed by Filter: 199484

(5 rows)

Let’s take a look at a more complex execution plan that uses aggregation:

=> EXPLAIN SELECT count(*) FROM seats;

QUERY PLAN

−−

Aggregate (cost=24.74..24.75 rows=1 width=8)

−> Seq Scan on seats (cost=0.00..21.39 rows=1339 width=0)

(2 rows)

The plan consists of two nodes: the upper node (Aggregate), which computes the

count function, pulls the data from the lower node (Seq Scan), which scans the

table.

The startup cost of the Aggregate node includes the aggregation itself: it is im-

possible to return the first row (which is the only one in this case) without getting

all the rows from the lower node. The aggregation cost is estimated based on the

execution cost of a conditional operation (estimated at0.0025 cpu_operator_cost) for each

input row:1

1 backend/optimizer/path/costsize.c, cost_agg function

340

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/optimizer/path/costsize.c;hb=REL_14_STABLE

18.2 Sequential Scans

=> SELECT reltuples,

current_setting('cpu_operator_cost') AS cpu_operator_cost,

round((

reltuples * current_setting('cpu_operator_cost')::real

)::numeric, 2) AS cpu_cost

FROM pg_class WHERE relname = 'seats';

reltuples | cpu_operator_cost | cpu_cost

−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−

1339 | 0.0025 | 3.35

(1 row)

The received estimate is added to the total cost of the Seq Scan node.

The total cost of the Aggregate node also includes the cost of processing a row to

be returned, which is estimated at 0.01cpu_tuple_cost:

=> WITH t(cpu_cost) AS (

SELECT round((

reltuples * current_setting('cpu_operator_cost')::real

)::numeric, 2)

FROM pg_class WHERE relname = 'seats'

)

SELECT 21.39 + t.cpu_cost AS startup_cost,

round((

21.39 + t.cpu_cost +

1 * current_setting('cpu_tuple_cost')::real

)::numeric, 2) AS total_cost

FROM t;

startup_cost | total_cost

−−−−−−−−−−−−−−+−−−−−−−−−−−−

24.74 | 24.75

(1 row)

Thus, cost estimation dependencies can be pictured as follows:

QUERY PLAN

−−

Aggregate

(cost=24.74..24.75 rows=1 width=8)

−> Seq Scan on seats

(cost=0.00..21.39 rows=1339 width=0)

(4 rows)

341

Chapter 18 Table Access Methods

18.3 Parallel Plans

Postgre��� supportsv. �.� parallel query execution.1 The leading process that performs

the query spawns (via postmaster) several worker processes that execute one and

the same parallel part of the plan simultaneously. The results are passed to the

leader, which puts them together in the Gather2 node. When not accepting the

data, the leader may also participate in the execution of the parallel part of the

plan.

If required,v. �� you can forbid the leader’s contributions to the parallel plan execution

by turning off theon parallel_leader_participation parameter.

parallel
part of the plan

parallel
part of the plan

Gather

sequential
part of the plan

parallel
part of the plan

worker workerleader

Naturally, starting these processes and sending data between them is not free, so

not all queries by far should be parallelized.

Besides, not all parts of the plan can be processed concurrently, even if parallel

execution is allowed. Some of the operations are performed by the leader alone, in

the sequential mode.

1 postgresql.org/docs/14/parallel-query.html

backend/access/transam/README.parallel
2 backend/executor/nodeGather.c

342

https://postgresql.org/docs/14/parallel-query.html
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/transam/README.parallel;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/executor/nodeGather.c;hb=REL_14_STABLE

18.4 Parallel Sequential Scans

Postgre��� does not support the other approach to parallel plan execution, which con-

sists in performing data processing by several workers that virtually form an assembly line

(roughly speaking, each plan node is performed by a separate process); this mechanism

was deemed inefficient by Postgre��� developers.

18.4 Parallel Sequential Scans

One of the nodes designed for parallel processing is the Parallel Seq Scan node,

which performs a parallel sequential scan.

The name sounds a bit controversial (is the scan sequential or parallel after all?),

but nevertheless, it reflects the essence of the operation. If we take a look at the file

access, table pages are read sequentially, following the order in which they would

have been read by a simple sequential scan. However, this operation is performed

by several concurrent processes. To avoid scanning one and the same page twice,

the executor synchronizes these processes via shared memory.

A subtle aspect here is v. ��that the operating system does not get the big picture typi-

cal of sequential scanning; instead, it sees several processes that perform random

reads. Therefore,data prefetching that usually speeds up sequential scans becomes

virtually useless. To minimize this unpleasant effect, Postgre��� assigns each pro-

cess not just one but several consecutive pages to read.1

As such, parallel scanning does not make much sense because the usual read costs

are further increased by the overhead incurred by data transfer from process to pro-

cess. However, if workers perform any post-processing on the fetched rows (such

as aggregation), the total execution time may turn out to be much shorter.

Cost Estimation

Let’s take a look at a simple query that performs aggregation on a large table. The

execution plan is parallelized:

1 backend/access/heap/heapam.c, table_block_parallelscan_startblock_init & table_block_parallel-

scan_nextpage functions

343

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/heap/heapam.c;hb=REL_14_STABLE

Chapter 18 Table Access Methods

=> EXPLAIN SELECT count(*) FROM bookings;

QUERY PLAN

−−

Finalize Aggregate (cost=25442.58..25442.59 rows=1 width=8)

−> Gather (cost=25442.36..25442.57 rows=2 width=8)

Workers Planned: 2

−> Partial Aggregate

(cost=24442.36..24442.37 rows=1 width=8)

−> Parallel Seq Scan on bookings

(cost=0.00..22243.29 rows=879629 width=0)

(7 rows)

All the nodes belowGather belong to the parallel part of the plan. They are executed

by each of the workers (two of them are planned here) and possibly by the leader

process (unless this functionality is turned off by the parallel_leader_participation

parameter). The Gather node itself and all the nodes above it make the sequential

part of the plan and are executed by the leader process alone.

The Parallel Seq Scan node represents a parallel heap scan. The rows field shows

the estimated average number of rows to be processed by a single process. All in all,

the execution must be performed by three processes (one leader and two workers),

but the leader process will handle fewer rows: its share gets smaller as the number

of workers grows.1 In this particular case, the factor is �.�.

=> SELECT reltuples::numeric, round(reltuples / 2.4) AS per_process

FROM pg_class WHERE relname = 'bookings';

reltuples | per_process

−−−−−−−−−−−+−−−−−−−−−−−−−

2111110 | 879629

(1 row)

The Parallel Seq Scan cost is calculated similar to that of a sequential scan. The re-

ceived value is smaller, as each process handles fewer rows; the �/� part is included

in full since the whole table still has to be read, page by page:

=> SELECT round((

relpages * current_setting('seq_page_cost')::real +

reltuples / 2.4 * current_setting('cpu_tuple_cost')::real

)::numeric, 2)

FROM pg_class WHERE relname = 'bookings';

1 backend/optimizer/path/costsize.c, get_parallel_divisor function

344

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/optimizer/path/costsize.c;hb=REL_14_STABLE

18.4 Parallel Sequential Scans

round

−−−−−−−−−−

22243.29

(1 row)

Next, the Partial Aggregate node performs aggregation of the fetched data; in this

particular case, it counts the number of rows.

The aggregation cost is estimated in the usual manner and is added to the cost

estimation of the table scan:

=> WITH t(startup_cost)

AS (

SELECT 22243.29 + round((

reltuples / 2.4 * current_setting('cpu_operator_cost')::real

)::numeric, 2)

FROM pg_class

WHERE relname = 'bookings'

)

SELECT startup_cost,

startup_cost + round((

1 * current_setting('cpu_tuple_cost')::real

)::numeric, 2) AS total_cost

FROM t;

startup_cost | total_cost

−−−−−−−−−−−−−−+−−−−−−−−−−−−

24442.36 | 24442.37

(1 row)

The next node (Gather) is executed by the leader process. This node is responsible

for launching workers and gathering the data they return.

For the purpose of planning, the cost estimation of starting processes (regardless

of their number) is defined by the 1000parallel_setup_cost parameter, while the cost of

each row transfer between the processes is estimated at 0.1parallel_tuple_cost.

In this example, the startup cost (spent on starting the processes) prevails; this

value is added to the startup cost of the Partial Aggregate node. The total cost also

includes the cost of transferring two rows; this value is added to the total cost of

the Partial Aggregate node:1

1 backend/optimizer/path/costsize.c, cost_gather function

345

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/optimizer/path/costsize.c;hb=REL_14_STABLE

Chapter 18 Table Access Methods

=> SELECT

24442.36 + round(

current_setting('parallel_setup_cost')::numeric,

2) AS setup_cost,

24442.37 + round(

current_setting('parallel_setup_cost')::numeric +

2 * current_setting('parallel_tuple_cost')::numeric,

2) AS total_cost;

setup_cost | total_cost

−−−−−−−−−−−−+−−−−−−−−−−−−

25442.36 | 25442.57

(1 row)

Last but not least, the Finalize Aggregate node aggregates all the partial results

received by the Gather node from the parallel processes.

The final aggregation is estimated just like any other. Its startup cost is based on

the cost of aggregating three rows; this value is added to the total cost of Gather

(since all the rows are needed to compute the result). The total cost of Finalize

Aggregate also includes the cost of returning one row.

=> WITH t(startup_cost) AS (

SELECT 25442.57 + round((

3 * current_setting('cpu_operator_cost')::real

)::numeric, 2)

FROM pg_class WHERE relname = 'bookings'

)

SELECT startup_cost,

startup_cost + round((

1 * current_setting('cpu_tuple_cost')::real

)::numeric, 2) AS total_cost

FROM t;

startup_cost | total_cost

−−−−−−−−−−−−−−+−−−−−−−−−−−−

25442.58 | 25442.59

(1 row)

Dependencies between cost estimations are determined by whether the node has

to accumulate the data before passing the result to its parent node. Aggregation

cannot return the result until it gets all the input rows, so its startup cost is based

on the total cost of the lower node. The Gather node, on the contrary, starts sending

rows upstream as soon as they are fetched. Therefore, the startup cost of this op-

eration depends on the startup cost of the lower node, while its total cost is based

on the lower node’s total cost.

346

18.5 Parallel Execution Limitations

Here is the dependency graph:

QUERY PLAN

−−−

Finalize Aggregate

(cost=25442.58..25442.59 rows=1 width=8)

−> Gather

(cost=25442.36..25442.57 rows=2 width=8)

Workers Planned: 2

−> Partial Aggregate

(cost=24442.36..24442.37 rows=1 width=8)

−> Parallel Seq Scan on bookings

(cost=0.00..22243.29 rows=879629 width=0)

(9 rows)

18.5 Parallel Execution Limitations

Number of Background Workers

The number of processes is controlled by a hierarchy of three parameters. The

maximal number of background workers running concurrently is defined by the

8max_worker_processes value.

However, parallel query execution is not the only operation that needs background

workers. For example, they also participate in logical replication and can be used

by extensions. The number of processes allocated specifically for parallel plan ex-

ecution is limited to the 8max_parallel_workers value.

Out of this number, up to 2max_parallel_workers_per_gather processes can serve one

leader.

The choice of these parameter values depends on the following factors:

• Hardware capabilities: the system must have free cores dedicated to parallel

execution.

• Table sizes: the database must contain large tables.

• A typical load: there must be queries that potentially benefit from parallel

execution.

347

Chapter 18 Table Access Methods

These criteria are typically met by ���� systems rather than ���� ones.

The planner will not consider parallel execution at all if the estimated volume of

heap data to be read does not exceed the8MB min_parallel_table_scan_size value.

Unless the number of processes for a particular table is explicitly specified in the

parallel_workers storage parameter, it will be calculated by the following formula:

1 + ⌊log3 (
table size

min_parallel_table_scan_size)⌋

It means that each time a table grows three times, Postgre��� assigns one more

parallel worker for its processing. The default settings give us these figures:

table,
��

number of
processes

8 �

�� �

�� �

��� �

��� �

���� �

In any case, the number of parallel workers cannot exceed the limit defined by the

max_parallel_workers_per_gather parameter.

If we query a small table of �� ��, only one worker will be planned and launched:

=> EXPLAIN (analyze, costs off, timing off, summary off)

SELECT count(*) FROM flights;

QUERY PLAN

−−−

Finalize Aggregate (actual rows=1 loops=1)

−> Gather (actual rows=2 loops=1)

Workers Planned: 1

Workers Launched: 1

−> Partial Aggregate (actual rows=1 loops=2)

−> Parallel Seq Scan on flights (actual rows=107434 lo...

(6 rows)

348

18.5 Parallel Execution Limitations

A query on a table of ��� �� gets only two processes because it hits the limit of

2max_parallel_workers_per_gather workers:

=> EXPLAIN (analyze, costs off, timing off, summary off)

SELECT count(*) FROM bookings;

QUERY PLAN

−−−

Finalize Aggregate (actual rows=1 loops=1)

−> Gather (actual rows=3 loops=1)

Workers Planned: 2

Workers Launched: 2

−> Partial Aggregate (actual rows=1 loops=3)

−> Parallel Seq Scan on bookings (actual rows=703703 l...

(6 rows)

If we remove this limit, we will get the estimated three processes:

=> ALTER SYSTEM SET max_parallel_workers_per_gather = 4;

=> SELECT pg_reload_conf();

=> EXPLAIN (analyze, costs off, timing off, summary off)

SELECT count(*) FROM bookings;

QUERY PLAN

−−−

Finalize Aggregate (actual rows=1 loops=1)

−> Gather (actual rows=4 loops=1)

Workers Planned: 3

Workers Launched: 3

−> Partial Aggregate (actual rows=1 loops=4)

−> Parallel Seq Scan on bookings (actual rows=527778 l...

(6 rows)

If the number of slots that are free during query execution turns out to be smaller

than the planned value, only the available number of workers will be launched.

Let’s limit the total number of parallel processes to five and run two queries simul-

taneously:

=> ALTER SYSTEM SET max_parallel_workers = 5;

=> SELECT pg_reload_conf();

=> EXPLAIN (analyze, costs off, timing off, summary off)

SELECT count(*) FROM bookings;

349

Chapter 18 Table Access Methods

=> EXPLAIN (analyze, costs off, timing off, summary off)

SELECT count(*) FROM bookings;

QUERY PLAN

−−−

Finalize Aggregate (actual rows=1 loops=1)

−> Gather (actual rows=3 loops=1)

Workers Planned: 3

Workers Launched: 2

−> Partial Aggregate (actual rows=1 loops=3)

−> Parallel Seq Scan on bookings (actual rows=7037...

(6 rows)

QUERY PLAN

−−−

Finalize Aggregate (actual rows=1 loops=1)

−> Gather (actual rows=4 loops=1)

Workers Planned: 3

Workers Launched: 3

−> Partial Aggregate (actual rows=1 loops=4)

−> Parallel Seq Scan on bookings (actual rows=527778 l...

(6 rows)

Although three processes were expected in both cases, one of the queries managed

to get only two slots.

Let’s restore the default settings:

=> ALTER SYSTEM RESET ALL;

=> SELECT pg_reload_conf();

Non-Parallelizable Queries

Not all queries can be parallelized.1 In particular, parallel plans cannot be used for

the following query types:

• Queries that modify or lock data (������, ������, ������ ��� ������, and the

like).

1 postgresql.org/docs/14/when-can-parallel-query-be-used.html

350

https://postgresql.org/docs/14/when-can-parallel-query-be-used.html

18.5 Parallel Execution Limitations

This restriction does not apply to subqueries within the following commands:

– ������ ����� ��, v. �������� ����, ������ ������������ ����

– ������� ������������ ���� v. ��

However, row insertion is still performed sequentially in all these cases.

• Queries that can be paused. It applies to queries run within cursors, including

��� loops in ��/pg���.

• Queries that call �������� ������ functions. By default, these are all user-

defined functions and a few standard ones. You can get the full list of unsafe

functions by querying the system catalog:

SELECT * FROM pg_proc WHERE proparallel = 'u';

• Queries within functions if these functions are called from a parallelized query

(to avoid recursive growth of the number of workers).

Some of these limitations may be removed in the future versions of Postgre���.

For example, v. ��the ability to parallelize queries at the Serializable isolation level is

already there.

Parallel insertion of rows using such commands as ������ and ���� is currently under

development.1

A query may remain unparallelized for several reasons:

• This type of a query does not support parallelization at all.

• Parallel plan usage is forbidden by the server configuration (for example, be-

cause of the imposed table size limit).

• A parallel plan is more expensive than a sequential one.

To check whether a query can be parallelized at all, you can temporarily switch

on the offforce_parallel_mode parameter. Then the planner will build parallel plans

whenever possible:

1 commitfest.postgresql.org/32/2844

commitfest.postgresql.org/32/2841

commitfest.postgresql.org/32/2610

351

https://commitfest.postgresql.org/32/2844
https://commitfest.postgresql.org/32/2841
https://commitfest.postgresql.org/32/2610

Chapter 18 Table Access Methods

=> EXPLAIN SELECT * FROM flights;

QUERY PLAN

−−

Seq Scan on flights (cost=0.00..4772.67 rows=214867 width=63)

(1 row)

=> SET force_parallel_mode = on;

=> EXPLAIN SELECT * FROM flights;

QUERY PLAN

−−−

Gather (cost=1000.00..27259.37 rows=214867 width=63)

Workers Planned: 1

Single Copy: true

−> Seq Scan on flights (cost=0.00..4772.67 rows=214867 width=63)

(4 rows)

Parallel Restricted Queries

The bigger is the parallel part of the plan, the more performance gains can be po-

tentially achieved. However, certain operations are executed strictly sequentially

by the leader process alone,1 even though they do not interfere with parallelization

as such. In other words, they cannot appear in the plan tree below the Gather node.

Non-expandable subqueries. Themost obvious example of a non-expandable sub-

query2 is scanning a ��� result (represented in the plan by the CTE Scan node):

=> EXPLAIN (costs off)

WITH t AS MATERIALIZED (

SELECT * FROM flights

)

SELECT count(*) FROM t;

QUERY PLAN

−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Aggregate

CTE t

−> Seq Scan on flights

−> CTE Scan on t

(4 rows)

1 postgresql.org/docs/14/parallel-safety.html
2 backend/optimizer/plan/subselect.c

352

https://postgresql.org/docs/14/parallel-safety.html
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/optimizer/plan/subselect.c;hb=REL_14_STABLE

18.5 Parallel Execution Limitations

If v. ��a ��� is not materialized, the plan does not contain the CTE Scan node, so this

limitation does not apply.

Note, however, that a ��� itself can be computed in the parallel mode if it turns out

to be less expensive:

=> EXPLAIN (costs off)

WITH t AS MATERIALIZED (

SELECT count(*) FROM flights

)

SELECT * FROM t;

QUERY PLAN

−−−

CTE Scan on t

CTE t

−> Finalize Aggregate

−> Gather

Workers Planned: 1

−> Partial Aggregate

−> Parallel Seq Scan on flights

(7 rows)

Another example of a non-expandable subquery is shown under by the SubPlan

node in the plan below:

=> EXPLAIN (costs off)

SELECT * FROM flights f

WHERE f.scheduled_departure > (-- SubPlan

SELECT min(f2.scheduled_departure)

FROM flights f2

WHERE f2.aircraft_code = f.aircraft_code

);

QUERY PLAN

−−−

Seq Scan on flights f

Filter: (scheduled_departure > (SubPlan 1))

SubPlan 1

−> Aggregate

−> Seq Scan on flights f2

Filter: (aircraft_code = f.aircraft_code)

(6 rows)

The first two rows represent the plan of themain query: the flights table is scanned

sequentially, and each of its rows is checked against the provided filter. The filter

353

Chapter 18 Table Access Methods

condition includes a subquery; the plan of this subquery starts on the third row. So

the SubPlan node is executed several times, once for each row fetched by sequential

scanning in this case.

The upper Seq Scan node of this plan cannot participate in parallel execution be-

cause it relies on the data returned by the SubPlan node.

Last but not least, here is one more non-expandable subquery represented by the

InitPlan node:

=> EXPLAIN (costs off)

SELECT * FROM flights f

WHERE f.scheduled_departure > (-- SubPlan

SELECT min(f2.scheduled_departure)

FROM flights f2

WHERE EXISTS (-- InitPlan

SELECT *

FROM ticket_flights tf

WHERE tf.flight_id = f.flight_id

)

);

QUERY PLAN

−−

Seq Scan on flights f

Filter: (scheduled_departure > (SubPlan 2))

SubPlan 2

−> Finalize Aggregate

InitPlan 1 (returns $1)

−> Seq Scan on ticket_flights tf

Filter: (flight_id = f.flight_id)

−> Gather

Workers Planned: 1

Params Evaluated: $1

−> Partial Aggregate

−> Result

One−Time Filter: $1

−> Parallel Seq Scan on flights f2

(14 rows)

Unlike the SubPlan node, InitPlan is evaluated only once (in this particular example,

once per each execution of the SubPlan 2 node).

The parent node of InitPlan cannot participate in parallel execution (but those

nodes that receive the result of the InitPlan evaluation can, like in this example).

354

18.5 Parallel Execution Limitations

Temporary tables. Temporary tables do not support parallel scanning, as they can

be accessed exclusively by the process that has created them. Their pages are pro-

cessed in the local p. ���buffer cache. Making the local cache accessible to several pro-

cesses would require a locking mechanism p. ���like in the shared cache, which would

make its other benefits less prominent.

=> CREATE TEMPORARY TABLE flights_tmp AS SELECT * FROM flights;

=> EXPLAIN (costs off)

SELECT count(*) FROM flights_tmp;

QUERY PLAN

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Aggregate

−> Seq Scan on flights_tmp

(2 rows)

Parallel restricted functions. Functions defined as �������� ���������� are allowed

only in the sequential part of the plan. You can get the list of such functions from

the system catalog by running the following query:

SELECT * FROM pg_proc WHERE proparallel = 'r';

Only label your functions as �������� ���������� (to say nothing of �������� ����)

if you are fully aware of all the implications and have carefully studied all the im-

posed restrictions.1

1 postgresql.org/docs/14/parallel-safety#PARALLEL-LABELING.html

355

https://postgresql.org/docs/14/parallel-safety#PARALLEL-LABELING.html

19
Index Access Methods

19.1 Indexes and Extensibility

Indexes are database objects that mainly serve the purpose of accelerating data ac-

cess. These are auxiliary structures: any index can be deleted and recreated based

on heap data. In addition to data access speedup, indexes are also used to enforce

some integrity constraints.

The Postgre��� core provides six built-in index access methods (index types):

=> SELECT amname FROM pg_am WHERE amtype = 'i';

amname

−−−−−−−−

btree

hash

gist

gin

spgist

brin

(6 rows)

Postgre���’s extensibility impliesv. �.� that new access methods can be added without

modifying the core. One such extension (the bloom method) is included into the

standard set of modules.

Despite all the differences between various index types, all of them eventually

match a key (such as a value of an indexed column) against heap tuplesp. ��� that con-

tain this key. Tuples are referred to by six-byte tuple ��s, or ���s. Knowing the key

or some information about the key, it is possible to quickly read the tuples that are

likely to contain the required data without scanning the whole table.

356

19.1 Indexes and Extensibility

To ensure that a new access method can be added as an extension, Postgre��� im-

plements a common indexing engine. Its main objective is to retrieve and process

���s returned by a particular access method:

• read data from the corresponding heap tuples

• check tuple visibility p. ��against a particular snapshot

• recheck conditions if their evaluation by the method is indecisive

The indexing engine also participates in execution of plans built at the optimiza-

tion stage. When assessing various execution paths, the optimizer needs to know

the properties of all potentially applicable access methods: can the method return

the data in the required order, or do we need a separate sorting stage? is it possible

to return several first values right away, or do we have to wait for the whole result

set to be fetched? and so on.

It is not only the optimizer that needs to know specifics of the accessmethod. Index

creation poses more questions to answer: does the access method support multi-

column indexes? can this index guarantee uniqueness?

The indexing engine allows using a variety of access methods; in order to be sup-

ported, an access method must implement a particular interface to declare its fea-

tures and properties.

Access methods are used to address the following tasks:

• implement algorithms for building indexes, as well as inserting and deleting

index entries

• distribute index entries between pages (to be further handled by the buffer

cache manager p. ���)

• implement the algorithm of vacuuming p. ���

• acquire locks p. ���to ensure correct concurrent operation

• generate ��� entries p. ���

• search indexed data by the key

• estimate index scan costs

357

Chapter 19 Index Access Methods

Extensibility also manifests itself as the ability to add new data types, which the

access method knows nothing of in advance. Therefore, access methods have to

define their own interfaces for plugging in arbitrary data types.

To enable usage of a new data type with a particular accessmethod, you have to im-

plement the corresponding interface—that is, provide operators that can be used

with an index, and possibly some auxiliary support functions. Such a set of opera-

tors and functions is called an operator class.

The indexing logic is partially implemented by the access method itself, but some

of it is outsourced to operator classes. This distribution is rather arbitrary: while

�-trees have all the logic wired into the access method, some other methods may

provide only the main framework, leaving all the implementation details at the

discretion of particular operator classes. One and the same data type is often sup-

ported by several operator classes, and the user can select the one with the most

suitable behavior.

Here is a small fraction of the overall picture:

Indexing
engine

btree

bool_ops boolean

int4_ops integer

text_ops

text

text_pattern_ops

gist

gist_int4_ops

gist_text_ops

point_ops point

access methods operator classes data types

358

19.2 Operator Classes and Families

19.2 Operator Classes and Families

Operator Classes

An access method interface1 is implemented by an operator class,2 which is a set of

operators and support functions applied by the access method to a particular data

type.

Classes of operators are stored in the pg_opclass table in the system catalog. The

following query returns the complete data for the above illustration:

=> SELECT amname, opcname, opcintype::regtype

FROM pg_am am

JOIN pg_opclass opc ON opcmethod = am.oid;

amname | opcname | opcintype

−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

btree | array_ops | anyarray

hash | array_ops | anyarray

btree | bit_ops | bit

btree | bool_ops | boolean

...

brin | pg_lsn_minmax_multi_ops | pg_lsn

brin | pg_lsn_bloom_ops | pg_lsn

brin | box_inclusion_ops | box

(177 rows)

In most cases, we do not have to know anything about operator classes. We simply

create an index that uses some operator class by default.

For example, here are �-tree operator classes that support the text type. One of the

classes is always marked as the default one:

=> SELECT opcname, opcdefault

FROM pg_am am

JOIN pg_opclass opc ON opcmethod = am.oid

WHERE amname = 'btree'

AND opcintype = 'text'::regtype;

1 postgresql.org/docs/14/xindex.html
2 postgresql.org/docs/14/indexes-opclass.html

359

https://postgresql.org/docs/14/xindex.html
https://postgresql.org/docs/14/indexes-opclass.html

Chapter 19 Index Access Methods

opcname | opcdefault

−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−

text_ops | t

varchar_ops | f

text_pattern_ops | f

varchar_pattern_ops | f

(4 rows)

A typical command for index creation looks as follows:

CREATE INDEX ON aircrafts(model, range);

But it is just a shorthand notation that expands to the following syntax:

CREATE INDEX ON aircrafts

USING btree -- the default access method

(

model text_ops, -- the default operator class for text

range int4_ops -- the default operator class for integer

);

If you would like to use an index of a different type or achieve some custom behav-

ior, you have to specify the desired access method or operator class explicitly.

Each operator class defined for a particular access method and data type must

contain a set of operators that take parameters of this type and implement the

semantics of this access method.

For example, the btree access method defines five mandatory comparison opera-

tors. Any btree operator class must contain all the five:

=> SELECT opcname, amopstrategy, amopopr::regoperator

FROM pg_am am

JOIN pg_opfamily opf ON opfmethod = am.oid

JOIN pg_opclass opc ON opcfamily = opf.oid

JOIN pg_amop amop ON amopfamily = opcfamily

WHERE amname = 'btree'

AND opcname IN ('text_ops', 'text_pattern_ops')

AND amoplefttype = 'text'::regtype

AND amoprighttype = 'text'::regtype

ORDER BY opcname, amopstrategy;

360

19.2 Operator Classes and Families

opcname | amopstrategy | amopopr

−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−

text_ops | 1 | <(text,text)

text_ops | 2 | <=(text,text)

text_ops | 3 | =(text,text)

text_ops | 4 | >=(text,text)

text_ops | 5 | >(text,text)

text_pattern_ops | 1 | ~<~(text,text)

text_pattern_ops | 2 | ~<=~(text,text)

text_pattern_ops | 3 | =(text,text)

text_pattern_ops | 4 | ~>=~(text,text)

text_pattern_ops | 5 | ~>~(text,text)

(10 rows)

The semantics of an operator implied by the accessmethod is reflected by the strat-

egy number shown as amopstrategy.1 For example, strategy � for btree means less

than, � denotes less than or equal to, and so on. Operators themselves can have

arbitrary names.

The example above shows two kinds of operators. The difference between regular

operators and those with a tilde is that the latter do not take collation2 into account

and perform bitwise comparison of strings. Nevertheless, both flavors implement

the same logical operations of comparison.

The text_pattern_ops operator class is designed to address the limitation in support

of the ~~ operator (which corresponds to the ���� operator). In a database using any

collation other than C, this operator cannot use a regular index on a text field:

=> SHOW lc_collate;

lc_collate

−−−−−−−−−−−−−

en_US.UTF−8

(1 row)

=> CREATE INDEX ON tickets(passenger_name);

=> EXPLAIN (costs off)

SELECT * FROM tickets WHERE passenger_name LIKE 'ELENA%';

1 postgresql.org/docs/14/xindex#XINDEX-STRATEGIES.html
2 postgresql.org/docs/14/collation.html

postgresql.org/docs/14/indexes-collations.html

361

https://postgresql.org/docs/14/xindex#XINDEX-STRATEGIES.html
https://postgresql.org/docs/14/collation.html
https://postgresql.org/docs/14/indexes-collations.html

Chapter 19 Index Access Methods

QUERY PLAN

−−

Seq Scan on tickets

Filter: (passenger_name ~~ 'ELENA%'::text)

(2 rows)

An index with the text_pattern_ops operator class behaves differently:

=> CREATE INDEX tickets_passenger_name_pattern_idx

ON tickets(passenger_name text_pattern_ops);

=> EXPLAIN (costs off)

SELECT * FROM tickets WHERE passenger_name LIKE 'ELENA%';

QUERY PLAN

−−

Bitmap Heap Scan on tickets

Filter: (passenger_name ~~ 'ELENA%'::text)

−> Bitmap Index Scan on tickets_passenger_name_pattern_idx

Index Cond: ((passenger_name ~>=~ 'ELENA'::text) AND

(passenger_name ~<~ 'ELENB'::text))

(5 rows)

Note how the filter expression has changed in the Index Cond condition. The search

now uses only the template’s prefix before %, while false-positive hits are filtered

out during a recheck based on the Filter condition. The operator class for the btree

access method does not provide an operator for comparing templates, and the only

way to apply a �-tree here is to rewrite this condition using comparison opera-

tors. The operators of the text_pattern_ops class do not take collation into account,

which gives us an opportunity to use an equivalent condition instead.1

An index can be used to speed up access by a filter condition if the following two

prerequisites are met:

� the condition is written as “indexed-column operator expression” (if the oper-

ator has a commuting counterpart specified,2 the condition can also have the

form of “expression operator indexed-column”)3

� and the operator belongs to the operator class specified for the indexed-column

in the index declaration.

1 backend/utils/adt/like_support.c
2 postgresql.org/docs/14/xoper-optimization#id-1.8.3.18.6.html
3 backend/optimizer/path/indxpath.c, match_clause_to_indexcol function

362

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/utils/adt/like_support.c;hb=REL_14_STABLE
https://postgresql.org/docs/14/xoper-optimization#id-1.8.3.18.6.html
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/optimizer/path/indxpath.c;hb=REL_14_STABLE

19.2 Operator Classes and Families

For example, the following query can use an index:

=> EXPLAIN (costs off)

SELECT * FROM tickets WHERE 'ELENA BELOVA' = passenger_name;

QUERY PLAN

−−

Index Scan using tickets_passenger_name_idx on tickets

Index Cond: (passenger_name = 'ELENA BELOVA'::text)

(2 rows)

Note the position of arguments in the Index Cond condition: at the execution stage,

the indexed field must be on the left. When the arguments are permuted, the oper-

ator is replaced by a commuting one; in this particular case, it is the same operator

because the equality relation is commutative.

In the next query, it is technically impossible to use a regular index because the

column name in the condition is replaced by a function call:

=> EXPLAIN (costs off)

SELECT * FROM tickets WHERE initcap(passenger_name) = 'Elena Belova';

QUERY PLAN

−−

Seq Scan on tickets

Filter: (initcap(passenger_name) = 'Elena Belova'::text)

(2 rows)

Here you can use an expression index,1 which has an arbitrary expression specified

in its declaration instead of a column:

=> CREATE INDEX ON tickets((initcap(passenger_name)));

=> EXPLAIN (costs off)

SELECT * FROM tickets WHERE initcap(passenger_name) = 'Elena Belova';

QUERY PLAN

−−

Bitmap Heap Scan on tickets

Recheck Cond: (initcap(passenger_name) = 'Elena Belova'::text)

−> Bitmap Index Scan on tickets_initcap_idx

Index Cond: (initcap(passenger_name) = 'Elena Belova'::text)

(4 rows)

An index expression can depend only on heap tuple values and must be affected

by neither other data stored in the database nor configuration parameters (such

1 postgresql.org/docs/14/indexes-expressional.html

363

https://postgresql.org/docs/14/indexes-expressional.html

Chapter 19 Index Access Methods

as locale settings). In other words, if the expression contains any function calls,

these functions must be ���������,1 and they must observe this volatility category.

Otherwise, an index scan and a heap scanmay return different results for the same

query.

Apart from regular operators, an operator class can provide support functions2 re-

quired by the access method. For example, the btree access method defines five

support functions;3 the first one (which compares two values) is mandatory, while

all the rest can be absent:

=> SELECT amprocnum, amproc::regproc

FROM pg_am am

JOIN pg_opfamily opf ON opfmethod = am.oid

JOIN pg_opclass opc ON opcfamily = opf.oid

JOIN pg_amproc amproc ON amprocfamily = opcfamily

WHERE amname = 'btree'

AND opcname = 'text_ops'

AND amproclefttype = 'text'::regtype

AND amprocrighttype = 'text'::regtype

ORDER BY amprocnum;

amprocnum | amproc

−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−

1 | bttextcmp

2 | bttextsortsupport

4 | btvarstrequalimage

(3 rows)

Operator Families

Each operator class always belongs to some operator family4 (listed in the system

catalog in the pg_opfamily table). A family can comprise several classes that handle

similar data types in the same way.

For example, the integer_ops family includes several classes for integral data types

that have the same semantics but differ in size:

1 postgresql.org/docs/14/xfunc-volatility.html
2 postgresql.org/docs/14/xindex#XINDEX-SUPPORT.html
3 postgresql.org/docs/14/btree-support-funcs.html
4 postgresql.org/docs/14/xindex#XINDEX-OPFAMILY.html

364

https://postgresql.org/docs/14/xfunc-volatility.html
https://postgresql.org/docs/14/xindex#XINDEX-SUPPORT.html
https://postgresql.org/docs/14/btree-support-funcs.html
https://postgresql.org/docs/14/xindex#XINDEX-OPFAMILY.html

19.2 Operator Classes and Families

=> SELECT opcname, opcintype::regtype

FROM pg_am am

JOIN pg_opfamily opf ON opfmethod = am.oid

JOIN pg_opclass opc ON opcfamily = opf.oid

WHERE amname = 'btree'

AND opfname = 'integer_ops';

opcname | opcintype

−−−−−−−−−−+−−−−−−−−−−−

int2_ops | smallint

int4_ops | integer

int8_ops | bigint

(3 rows)

The datetime_ops family comprises operator classes that process dates:

=> SELECT opcname, opcintype::regtype

FROM pg_am am

JOIN pg_opfamily opf ON opfmethod = am.oid

JOIN pg_opclass opc ON opcfamily = opf.oid

WHERE amname = 'btree'

AND opfname = 'datetime_ops';

opcname | opcintype

−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

date_ops | date

timestamptz_ops | timestamp with time zone

timestamp_ops | timestamp without time zone

(3 rows)

While each operator class supports a single data type, a family can comprise oper-

ator classes for different data types:

=> SELECT opcname, amopopr::regoperator

FROM pg_am am

JOIN pg_opfamily opf ON opfmethod = am.oid

JOIN pg_opclass opc ON opcfamily = opf.oid

JOIN pg_amop amop ON amopfamily = opcfamily

WHERE amname = 'btree'

AND opfname = 'integer_ops'

AND amoplefttype = 'integer'::regtype

AND amopstrategy = 1

ORDER BY opcname;

365

Chapter 19 Index Access Methods

opcname | amopopr

−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−

int2_ops | <(integer,bigint)

int2_ops | <(integer,smallint)

int2_ops | <(integer,integer)

int4_ops | <(integer,bigint)

int4_ops | <(integer,smallint)

int4_ops | <(integer,integer)

int8_ops | <(integer,bigint)

int8_ops | <(integer,smallint)

int8_ops | <(integer,integer)

(9 rows)

Thanks to such grouping of various operators into a single family, the planner can

do without type casting when an index is used for conditions involving values of

different types.

19.3 Indexing Engine Interface

Just likev. �.� for table access methods, the amhandler column of the pg_am table con-

tains the name of the function that implements the interface:1

=> SELECT amname, amhandler FROM pg_am WHERE amtype = 'i';

amname | amhandler

−−−−−−−−+−−−−−−−−−−−−−

btree | bthandler

hash | hashhandler

gist | gisthandler

gin | ginhandler

spgist | spghandler

brin | brinhandler

(6 rows)

This function fills placeholders in the interface structure2 with actual values. Some

of them are functions responsible for separate tasks related to index access (for

example, they can perform an index scan and return heap tuple ��s), while others

are index method properties that the indexing engine must be aware of.

1 postgresql.org/docs/14/indexam.html
2 include/access/amapi.h

366

https://postgresql.org/docs/14/indexam.html
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/include/access/amapi.h;hb=REL_14_STABLE

19.3 Indexing Engine Interface

All properties are grouped into three categories:1

• access method properties

• properties of a particular index

• column-level properties of an index

The distinction between accessmethod and index-level properties is provided with

a view to the future: right now, all the indexes based on a particular access method

always have the same properties at these two levels.

Access Method Properties

The following five properties v. ��are defined at the access method level (shown for the

�-tree method here):

=> SELECT a.amname, p.name, pg_indexam_has_property(a.oid, p.name)

FROM pg_am a, unnest(array[

'can_order', 'can_unique', 'can_multi_col',

'can_exclude', 'can_include'

]) p(name)

WHERE a.amname = 'btree';

amname | name | pg_indexam_has_property

−−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−

btree | can_order | t

btree | can_unique | t

btree | can_multi_col | t

btree | can_exclude | t

btree | can_include | t

(5 rows)

C�� O���� The ability to receive sorted data.2 This property is currently supported

only by �-trees.

To get the results in the required order, you can always scan the table and then

sort the fetched data:

1 backend/utils/adt/amutils.c, indexam_property function
2 postgresql.org/docs/14/indexes-ordering.html

367

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/utils/adt/amutils.c;hb=REL_14_STABLE
https://postgresql.org/docs/14/indexes-ordering.html

Chapter 19 Index Access Methods

=> EXPLAIN (costs off)

SELECT * FROM seats ORDER BY seat_no;

QUERY PLAN

−−−−−−−−−−−−−−−−−−−−−−−−

Sort

Sort Key: seat_no

−> Seq Scan on seats

(3 rows)

But if there is an index that supports this property, the data can be returned

in the desired order at once:

=> EXPLAIN (costs off)

SELECT * FROM seats ORDER BY aircraft_code;

QUERY PLAN

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Index Scan using seats_pkey on seats

(1 row)

C�� U����� Support for unique and primary key constraints.1 This property ap-

plies only to �-trees.

Each time a unique or primary key constraint is declared, Postgre��� automat-

ically creates a unique index to support this constraint.

=> INSERT INTO bookings(book_ref, book_date, total_amount)

VALUES ('000004', now(), 100.00);

ERROR: duplicate key value violates unique constraint

"bookings_pkey"

DETAIL: Key (book_ref)=(000004) already exists.

That said, if you simply create a unique index without explicitly declaring an

integrity constraint, the effect will seem to be exactly the same: the indexed

column will not allow duplicates. So what is the difference?

An integrity constraint defines the property that must never be violated,while

an index is just a mechanism to guarantee it. In theory, a constraint could be

imposed using other means.

For example, Postgre��� does not support global indexes for partitioned ta-

bles, but nevertheless, you can create a unique constraint on such tables (if it

1 postgresql.org/docs/14/indexes-unique.html

368

https://postgresql.org/docs/14/indexes-unique.html

19.3 Indexing Engine Interface

includes the partition key). In this case, the global uniqueness is ensured by

local unique indexes of each partition, as different partitions cannot have the

same partition keys.

C�� M���� C�� The ability to build a multicolumn index.1

A multicolumn index can speed up search by several conditions imposed on

different table columns. For example, the ticket_flights table has a composite

primary key, so the corresponding index is built on more than one column:

=> \d ticket_flights_pkey

Index "bookings.ticket_flights_pkey"

Column | Type | Key? | Definition

−−−−−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−+−−−−−−−−−−−−

ticket_no | character(13) | yes | ticket_no

flight_id | integer | yes | flight_id

primary key, btree, for table "bookings.ticket_flights"

A flight search by a ticket number and a flight �� is performed using an index:

=> EXPLAIN (costs off)

SELECT * FROM ticket_flights

WHERE ticket_no = '0005432001355'

AND flight_id = 51618;

QUERY PLAN

−−

Index Scan using ticket_flights_pkey on ticket_flights

Index Cond: ((ticket_no = '0005432001355'::bpchar) AND

(flight_id = 51618))

(3 rows)

As a rule, a multicolumn index can speed up search even if filter conditions

involve only some of its columns. In the case of a �-tree, the search will be

efficient if the filter condition spans a range of columns that appear first in

the index declaration:

=> EXPLAIN (costs off)

SELECT *

FROM ticket_flights

WHERE ticket_no = '0005432001355';

1 postgresql.org/docs/14/indexes-multicolumn.html

369

https://postgresql.org/docs/14/indexes-multicolumn.html

Chapter 19 Index Access Methods

QUERY PLAN

−−

Index Scan using ticket_flights_pkey on ticket_flights

Index Cond: (ticket_no = '0005432001355'::bpchar)

(2 rows)

In all other cases (for example, if the condition includes only flights_id), search

will be virtually limited to the initial columns (if the query includes the cor-

responding conditions), while other conditions will only be used to filter out

the returned results. Indexes of other types may behave differently though.

C�� E������ Support for ������� constraints.1

An ������� constraint guarantees that a condition defined by an operator will

not be satisfied for any pair of table rows. To impose this constraint, Post-

gre��� automatically creates an index; there must be an operator class that

contains the operator used in the constraint’s condition.

It is the intersection operator && that usually serves this purpose. For in-

stance, you can use it to explicitly declare that a conference room cannot be

booked twice for the same time, or that buildings on a map cannot overlap.

With the equality operator, the exclusion constraint takes on the meaning of

uniqueness: the table is forbidden to have two rows with the same key val-

ues. Nevertheless, it is not the same as a ������ constraint: in particular, the

exclusion constraint key cannot be referred to from foreign keys, and neither

can it be used in the �� �������� clause.

C�� I������ The abilityv. �� to add non-key columns to an index,whichmake this index

covering.p. ���

Using this property, you can extend a unique index with additional columns.

Such an index still guarantees that all the key column values are unique,while

data retrieval from the included columns incurs no heap access:

=> CREATE UNIQUE INDEX ON flights(flight_id) INCLUDE (status);

=> EXPLAIN (costs off)

SELECT status FROM flights

WHERE flight_id = 51618;

1 postgresql.org/docs/14/ddl-constraints#DDL-CONSTRAINTS-EXCLUSION.html

370

https://postgresql.org/docs/14/ddl-constraints#DDL-CONSTRAINTS-EXCLUSION.html

19.3 Indexing Engine Interface

QUERY PLAN

−−−

Index Only Scan using flights_flight_id_status_idx on flights

Index Cond: (flight_id = 51618)

(2 rows)

Index-Level Properties

Here are the properties related to an index (shown for an existing one):

=> SELECT p.name, pg_index_has_property('seats_pkey', p.name)

FROM unnest(array[

'clusterable', 'index_scan', 'bitmap_scan', 'backward_scan'

]) p(name);

name | pg_index_has_property

−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−

clusterable | t

index_scan | t

bitmap_scan | t

backward_scan | t

(4 rows)

C���������� The ability to physically move heap tuples in accordance with the or-

der in which their ��s are returned by an index scan. p. ���

This property shows whether the ������� command is supported.

I���� S��� Index scan support. p. ���

This property implies that the access method can return ���s one by one.

Strange as it may seem, some indexes do not provide this functionality.

B����� S��� Bitmap scan support. p. ���

This property defines whether the access method can build and return a

bitmap of all ���s at once.

B������� S��� The ability to return results in reverse order as compared to the

one specified at index creation.

This property makes sense only if the access method supports index scans.

371

Chapter 19 Index Access Methods

Column-Level Properties

And finally, let’s take a look at the column properties:

=> SELECT p.name,

pg_index_column_has_property('seats_pkey', 1, p.name)

FROM unnest(array[

'asc', 'desc', 'nulls_first', 'nulls_last', 'orderable',

'distance_orderable', 'returnable', 'search_array', 'search_nulls'

]) p(name);

name | pg_index_column_has_property

−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

asc | t

desc | f

nulls_first | f

nulls_last | t

orderable | t

distance_orderable | f

returnable | t

search_array | t

search_nulls | t

(9 rows)

A��, D���, N���� F����, N���� L��� Ordering column values.

These properties define whether column values should be stored in ascending

or descending order, and whether ���� valuesp. ��� should appear before or after

regular values. All these properties are applicable only to �-trees.

O�������� The ability to sort column values using the ����� �� clause.

This property is applicable only to �-trees.

D������� O�������� Support for ordering operators.1p. ���

Unlike regular indexing operators that return logical values, ordering opera-

tors return a real number that denotes the “distance” from one argument to

another. Indexes support such operators specified in the ����� �� clause of a

query.

For example, the ordering operator <-> can find the airports located at the

shortest distance to the specified point:

1 postgresql.org/docs/14/xindex#XINDEX-ORDERING-OPS.html

372

https://postgresql.org/docs/14/xindex#XINDEX-ORDERING-OPS.html

19.3 Indexing Engine Interface

=> CREATE INDEX ON airports_data USING gist(coordinates);

=> EXPLAIN (costs off)

SELECT * FROM airports

ORDER BY coordinates <-> point (43.578,57.593)

LIMIT 3;

QUERY PLAN

−−−

Limit

−> Index Scan using airports_data_coordinates_idx on airpo...

Order By: (coordinates <−> '(43.578,57.593)'::point)

(3 rows)

R��������� The ability to return data without accessing the table (index-only scan p. ���

support).

This property defines whether an index structure allows retrieving indexed

values. It is not always possible: for example, some indexes may store hash

codes rather than actual values. In this case, the C�� I������ property will not

be available either.

S����� A���� Support for searching several elements in an array.

An explicit use of arrays is not the only case when it might be necessary. For

example, the planner transforms the �� (list) expression into an array scan:

=> EXPLAIN (costs off)

SELECT * FROM bookings

WHERE book_ref IN ('C7C821', 'A5D060', 'DDE1BB');

QUERY PLAN

−−

Index Scan using bookings_pkey on bookings

Index Cond: (book_ref = ANY

('{C7C821,A5D060,DDE1BB}'::bpchar[]))

(3 rows)

If the indexmethod does not support such operators, the executormay have to

perform several iterations to find particular values (which can make the index

scan less efficient).

S����� N���� Search for �� ���� and �� ��� ���� conditions.

Should we index ���� values? On the one hand, it allows us to perform index

scans for conditions like �� [���] ����, as well as use the index as a covering

373

Chapter 19 Index Access Methods

one if no filter conditions are provided (in this case, the index has to return

the data of all the heap tuples, including those that contain ���� values). But

on the other hand, skipping ���� values can reduce the index size.

The decision remains at the discretion of access method developers, but more

often than not ���� values do get indexed.

If you do not need ���� values in an index, you can exclude them by building

a partial index1 that covers only those rows that are required. For example:

=> CREATE INDEX ON flights(actual_arrival)

WHERE actual_arrival IS NOT NULL;

=> EXPLAIN (costs off)

SELECT * FROM flights

WHERE actual_arrival = '2017-06-13 10:33:00+03';

QUERY PLAN

−−−

Index Scan using flights_actual_arrival_idx on flights

Index Cond: (actual_arrival = '2017−06−13 10:33:00+03'::ti...

(2 rows)

A partial index is smaller than the full one, and it gets updated only if the

modified row is indexed, which can sometimes lead to tangible performance

gains. Obviously, apart from ���� checks, the ����� clause can provide any

condition (that can be used with immutable functions).

The ability to build partial indexes is provided by the indexing engine, so it

does not depend on the access method.

Naturally, the interface includes only those properties of index methods that must

be known in advance for a correct decision to be taken. For example, it does not

list any properties that enable such features as support for predicate locks or non-

blocking index creation (������������). Such properties are defined in the code of

the functions that implement the interface.

1 postgresql.org/docs/14/indexes-partial.html

374

https://postgresql.org/docs/14/indexes-partial.html

20
Index Scans

20.1 Regular Index Scans

There are two basic ways of accessing ���s provided by an index. The first one is

to perform an index scan. Most of the index access methods (but not all of them)

have the I���� S��� p. ���property to support this operation.

Index scans are represented in the plan by the Index Scan1 node:

=> EXPLAIN SELECT * FROM bookings

WHERE book_ref = '9AC0C6' AND total_amount = 48500.00;

QUERY PLAN

−−−

Index Scan using bookings_pkey on bookings

(cost=0.43..8.45 rows=1 width=21)

Index Cond: (book_ref = '9AC0C6'::bpchar)

Filter: (total_amount = 48500.00)

(4 rows)

During an index scan, the access method returns ���s one by one.2 Upon receiv-

ing a ���, the indexing engine accesses the heap page this ��� refers to, gets the

corresponding tuple, and, if the visibility rules are met, returns the requested set

of fields of this tuple. This process continues until the access method runs out of

���s that matches the query.

The Index Cond line includes only those filter conditions that can be checked using

an index. Other conditions that have to be rechecked against the heap are listed

separately in the Filter line.

1 backend/executor/nodeIndexscan.c
2 backend/access/index/indexam.c, index_getnext_tid function

375

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/executor/nodeIndexscan.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/index/indexam.c;hb=REL_14_STABLE

Chapter 20 Index Scans

As this example shows, both index and heap access operations are handled by a

common Index Scan node rather by two different ones. But there is also a sepa-

rate Tid Scan node,1 which fetches tuples from the heap if their ��s are known in

advance:

=> EXPLAIN SELECT * FROM bookings WHERE ctid = '(0,1)'::tid;

QUERY PLAN

−−−

Tid Scan on bookings (cost=0.00..4.01 rows=1 width=21)

TID Cond: (ctid = '(0,1)'::tid)

(2 rows)

Cost Estimation

Cost estimation of an index scan comprises the estimated costs of index access

operations and heap page reads.

Obviously, the index-related part of the estimation fully depends on the particular

access method. For �-trees, the cost is mostly incurred by fetching index pages

and processing their entries. The number of pages and rows to be read can be

determined by the total volume of data and the selectivity of the applied filtersp. ��� .

Index pages are accessed at random (pages that follow each other in the logical

structure are physically scattered on disk). The estimation is further increased by

��� resources spent on getting from the root to the leaf node and computing all

the required expressions.2

The heap-related part of the estimation includes the cost of heap page access and

the ��� time required to process all the fetched tuples. It is important to note

that �/� estimation depends on both the index scan selectivity and the correlation

between the physical order of tuples on disk and the order in which the access

method returns their ��s.

1 backend/executor/nodeTidscan.c
2 backend/utils/adt/selfuncs.c, btcostestimate function

postgresql.org/docs/14/index-cost-estimation.html

376

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/executor/nodeTidscan.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/utils/adt/selfuncs.c;hb=REL_14_STABLE
https://postgresql.org/docs/14/index-cost-estimation.html

20.1 Regular Index Scans

Good Scenario: High Correlation

If the physical order of tuples on disk has a perfect correlationwith the logical order

of ���s in the index, each page will be accessed only once: the Index Scan node will

sequentially go from one page to another, reading the tuples one by one.

heap
page

a tuple
matching

filter conditions

Postgre��� collects statistics on correlation p. ���:

=> SELECT attname, correlation

FROM pg_stats WHERE tablename = 'bookings'

ORDER BY abs(correlation) DESC;

attname | correlation

−−−−−−−−−−−−−−+−−−−−−−−−−−−−−

book_ref | 1

total_amount | 0.0026738467

book_date | 8.02188e−05

(3 rows)

The correlation is high if the corresponding absolute value is close to one (like

in the case of book_ref); values that are close to zero are a sign of chaotic data

distribution.

In this particular case, high correlation in the book_ref column is of course due to the fact

that the data has been loaded into the table in ascending order based on this column,

and there have been no updates yet. We would see the same picture if we executed the

������� command for the index created on this column.

377

Chapter 20 Index Scans

However, the perfect correlation does not guarantee that all queries will be returning re-

sults in ascending order of book_ref values. First of all, any row update moves the resulting

tuple to the end of the table. Second, the plan that relies on an index scan based on some

other column returns the results in a different order. And even a sequential scan may not

start at the beginning of the tablep. ��� . So if you need a particular order, you should explicitly

define it in the ����� �� clause.

Here is an example of an index scan that processes a large number of rows:

=> EXPLAIN SELECT * FROM bookings WHERE book_ref < '100000';

QUERY PLAN

−−−

Index Scan using bookings_pkey on bookings

(cost=0.43..4638.91 rows=132999 width=21)

Index Cond: (book_ref < '100000'::bpchar)

(3 rows)

The condition’s selectivity is estimated as follows:

=> SELECT round(132999::numeric/reltuples::numeric, 4)

FROM pg_class WHERE relname = 'bookings';

round

−−−−−−−−

0.0630

(1 row)

This value is closep. ��� to 1

16
, whichwe could have guessed knowing that book_ref values

range from ������ to ������.

For �-trees, the index-related part of the �/� cost estimation includes the cost of

reading all the required pages. Index entries that satisfy any condition supported

by �-trees are stored in pages bound into an ordered list, so the number of index

pages to be read is estimated at the index size multiplied by the selectivity. But

since these pages are not physically ordered, reading happens in a random fashion.

C�� resources are spent on processing all the index entries that are read (the cost of

processing a single entry is estimated at the0.005 cpu_index_tuple_cost value) and com-

puting the condition for each of these entries (in this case, the condition contains

a single operator; its cost is estimated at the0.0025 cpu_operator_cost value).

378

20.1 Regular Index Scans

Table access is regarded as sequential reading of the required number of pages. In

the case of a perfect correlation, heap tuples will follow each other on disk, so the

number of pages is estimated at the size of the table multiplied by the selectivity.

The �/� cost is further extended by the expenses incurred by tuple processing; they

are estimated at the 0.01cpu_tuple_cost value per tuple.

=> WITH costs(idx_cost, tbl_cost) AS (

SELECT

(

SELECT round(

current_setting('random_page_cost')::real * pages +

current_setting('cpu_index_tuple_cost')::real * tuples +

current_setting('cpu_operator_cost')::real * tuples

)

FROM (

SELECT relpages * 0.0630 AS pages, reltuples * 0.0630 AS tuples

FROM pg_class WHERE relname = 'bookings_pkey'

) c

),

(

SELECT round(

current_setting('seq_page_cost')::real * pages +

current_setting('cpu_tuple_cost')::real * tuples

)

FROM (

SELECT relpages * 0.0630 AS pages, reltuples * 0.0630 AS tuples

FROM pg_class WHERE relname = 'bookings'

) c

)

)

SELECT idx_cost, tbl_cost, idx_cost + tbl_cost AS total

FROM costs;

idx_cost | tbl_cost | total

−−−−−−−−−−+−−−−−−−−−−+−−−−−−−

2457 | 2177 | 4634

(1 row)

These calculations illustrate the logic behind the cost estimation, so the result is

aligned with the estimation provided by the planner, even if it is approximated.

Getting the exact value would require taking other details into account, which we

are not going to discuss here.

379

Chapter 20 Index Scans

Bad Scenario: Low Correlation

Everything changes if the correlation is low. Let’s create an index on the book_date

column, which has almost zero correlation with this index, and then take a look at

the query that selects almost the same fraction of rows as in the previous example.

Index access turns out to be so expensive that the planner chooses it only if all the

other alternatives are explicitly forbidden:

=> CREATE INDEX ON bookings(book_date);

=> SET enable_seqscan = off;

=> SET enable_bitmapscan = off;

=> EXPLAIN SELECT * FROM bookings

WHERE book_date < '2016-08-23 12:00:00+03';

QUERY PLAN

−−−

Index Scan using bookings_book_date_idx on bookings

(cost=0.43..56957.48 rows=132403 width=21)

Index Cond: (book_date < '2016−08−23 12:00:00+03'::timestamp w...

(3 rows)

The thing is that low correlation increases the chances of the next tuple returned by

the access method to be located in a different page. Therefore, the Index Scan node

has to hop between pages instead of reading them sequentially; in the worst-case

scenario, the number of page accesses can reach the number of fetched tuples.

However, we cannot simply replace seq_page_cost with random_page_cost and rel-

pages with reltuples in the good-scenario calculations. The cost that we see in the

plan is much lower than the value we would have estimated this way:

380

20.1 Regular Index Scans

=> WITH costs(idx_cost, tbl_cost) AS (

SELECT

(SELECT round(

current_setting('random_page_cost')::real * pages +

current_setting('cpu_index_tuple_cost')::real * tuples +

current_setting('cpu_operator_cost')::real * tuples

)

FROM (

SELECT relpages * 0.0630 AS pages, reltuples * 0.0630 AS tuples

FROM pg_class WHERE relname = 'bookings_pkey'

) c

),

(SELECT round(

current_setting('random_page_cost')::real * tuples +

current_setting('cpu_tuple_cost')::real * tuples

)

FROM (

SELECT relpages * 0.0630 AS pages, reltuples * 0.0630 AS tuples

FROM pg_class WHERE relname = 'bookings'

) c

)

)

SELECT idx_cost, tbl_cost, idx_cost + tbl_cost AS total FROM costs;

idx_cost | tbl_cost | total

−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−

2457 | 533330 | 535787

(1 row)

The reason is that the model takes caching into account. Frequently used pages

are kept in the buffer cache (and in the �� cache), so the bigger the cache size, the

more chances to find the required page in it, thus avoiding an extra disk access op-

eration. For planning purposes, the cache size is defined by the 4GBeffective_cache_size

parameter. The smaller its value, the more pages are expected to be read.

The graph that follows shows the dependency between the estimation of the num-

ber of pages to be read and the table size (for the selectivity of 1

2
and the page

containing 10 rows).1 The dashed lines show the access count in the best scenario

possible (half of the page count if the correlation is perfect) and in the worst sce-

nario (half of the row count if there is zero correlation and no cache).

1 backend/optimizer/path/costsize.c, index_pages_fetched function

381

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/optimizer/path/costsize.c;hb=REL_14_STABLE

Chapter 20 Index Scans

table size

page
access
count

effective_cache_size

0.
5
of
ro
w
co
un
t

se
l =

0.
5

page
count

0.5 of page co
unt

It is assumed that the effective_cache_size value indicates the total volume of mem-

ory that can be used for caching (including both the Postgre��� buffer cache and

�� cache). But since this parameter is used solely for estimation purposes and does

not affect memory allocation itself, you do not have to take actual figures into ac-

count when changing this setting.

If you reduce effective_cache_size to the minimum, the plan estimation will be close

to the low-end value shown above for the no-caching case:

=> SET effective_cache_size = '8kB';

=> EXPLAIN SELECT * FROM bookings

WHERE book_date < '2016-08-23 12:00:00+03';

QUERY PLAN

−−−

Index Scan using bookings_book_date_idx on bookings

(cost=0.43..532745.48 rows=132403 width=21)

Index Cond: (book_date < '2016−08−23 12:00:00+03'::timestamp w...

(3 rows)

382

20.2 Index-Only Scans

=> RESET effective_cache_size;

=> RESET enable_seqscan;

=> RESET enable_bitmapscan;

The planner calculates the table �/� cost for both worst-case and best-case scenar-

ios and then takes an intermediate value based on the actual correlation.1

Thus, an index scan can be a good choice if only a fraction of rows has to be read. If

heap tuples are correlated with the order in which the access method returns their

��s, this fraction can be quite substantial. However, if the correlation is low, index

scanning becomes much less attractive for queries with low selectivity.

20.2 Index-Only Scans

If an index contains all the heap data required by the query, it is called a covering

index for this particular query. If such an index is available, extra table access can

be avoided: instead of ���s, the access method can return the actual data directly.

Such a type of an index scan is called an index-only scan.2 It can be used by those

access methods that support the R��������� p. ���property.

In the plan, this operation is represented by the Index Only Scan3 node:

=> EXPLAIN SELECT book_ref FROM bookings WHERE book_ref < '100000';

QUERY PLAN

−−−

Index Only Scan using bookings_pkey on bookings

(cost=0.43..3791.91 rows=132999 width=7)

Index Cond: (book_ref < '100000'::bpchar)

(3 rows)

The name suggests that this node never has to access the heap, but it is not so.

In Postgre���, indexes contain no information on tuple visibility p. ��, so the access

method returns the data of all the heap tuples that satisfy the filter condition, even

1 backend/optimizer/path/costsize.c, cost_index function
2 postgresql.org/docs/14/indexes-index-only-scans.html
3 backend/executor/nodeIndexonlyscan.c

383

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/optimizer/path/costsize.c;hb=REL_14_STABLE
https://postgresql.org/docs/14/indexes-index-only-scans.html
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/executor/nodeIndexonlyscan.c;hb=REL_14_STABLE

Chapter 20 Index Scans

if the current transaction cannot see them. Their visibility is then checked by the

indexing engine.

However, if this method had to access the table to check visibility of each tuple,

it would not be any different from a regular index scan. Instead, it employs the

visibility mapp. �� provided for tables, in which the vacuum process marks the pages

that contain only all-visible tuples (that is, those tuples that are accessible to all

transactions, regardless of the snapshot used). If the ��� returned by the index

access method belongs to such a page, there is no need to check its visibility.

The cost estimation of an index-only scan depends on the fraction of all-visible

pages in the heap. Postgre��� collects such statistics:

=> SELECT relpages, relallvisible

FROM pg_class WHERE relname = 'bookings';

relpages | relallvisible

−−−−−−−−−−+−−−−−−−−−−−−−−−

13447 | 13446

(1 row)

The cost estimation of an index-only scan differs from that of a regular index scan:

its �/� cost related to table access is taken in proportion to the fraction of pages

that do not appear in the visibility map. (The cost estimation of tuple processing

is the same.)

Since in this particular example all pages contain only all-visible tuples, the cost

of heap �/� is in fact excluded from the cost estimation:

=> WITH costs(idx_cost, tbl_cost) AS (

SELECT

(

SELECT round(

current_setting('random_page_cost')::real * pages +

current_setting('cpu_index_tuple_cost')::real * tuples +

current_setting('cpu_operator_cost')::real * tuples

)

FROM (

SELECT relpages * 0.0630 AS pages,

reltuples * 0.0630 AS tuples

FROM pg_class WHERE relname = 'bookings_pkey'

) c

) AS idx_cost,

384

20.2 Index-Only Scans

(

SELECT round(

(1 - frac_visible) * -- fraction of non-all-visible pages

current_setting('seq_page_cost')::real * pages +

current_setting('cpu_tuple_cost')::real * tuples

)

FROM (

SELECT relpages * 0.0630 AS pages,

reltuples * 0.0630 AS tuples,

relallvisible::real/relpages::real AS frac_visible

FROM pg_class WHERE relname = 'bookings'

) c

) AS tbl_cost

)

SELECT idx_cost, tbl_cost, idx_cost + tbl_cost AS total

FROM costs;

idx_cost | tbl_cost | total

−−−−−−−−−−+−−−−−−−−−−+−−−−−−−

2457 | 1330 | 3787

(1 row)

Any unvacuumed changes that have not disappeared behind the database horizon p. ���

yet increase the estimated cost of the plan (and, consequently, make this plan less

attractive to the optimizer). The ������� ������� command can show the actual

heap access count.

In a newly created table, Postgre��� has to check visibility of all the tuples:

=> CREATE TEMP TABLE bookings_tmp

WITH (autovacuum_enabled = off) AS

SELECT * FROM bookings

ORDER BY book_ref;

=> ALTER TABLE bookings_tmp ADD PRIMARY KEY(book_ref);

=> ANALYZE bookings_tmp;

=> EXPLAIN (analyze, timing off, summary off)

SELECT book_ref FROM bookings_tmp WHERE book_ref < '100000';

QUERY PLAN

−−−

Index Only Scan using bookings_tmp_pkey on bookings_tmp

(cost=0.43..4638.91 rows=132999 width=7) (actual rows=132109 l...

Index Cond: (book_ref < '100000'::bpchar)

Heap Fetches: 132109

(4 rows)

385

Chapter 20 Index Scans

But once the table has been vacuumed, such a check becomes redundant and is not

performed as long as all the pages remain all-visible.

=> VACUUM bookings_tmp;

=> EXPLAIN (analyze, timing off, summary off)

SELECT book_ref FROM bookings_tmp WHERE book_ref < '100000';

QUERY PLAN

−−−

Index Only Scan using bookings_tmp_pkey on bookings_tmp

(cost=0.43..3787.91 rows=132999 width=7) (actual rows=132109 l...

Index Cond: (book_ref < '100000'::bpchar)

Heap Fetches: 0

(4 rows)

Indexes with the Include Clause

It is not always possible to extend an index with all the columns required by a

query:

• For a unique index, adding a new column would compromise the uniqueness

of the original key columns.

• The index access method may not provide an operator class for the data type

of the column to be added.

In this case,v. �� you can still include columns into an index without making them a

part of the index key. It will of course be impossible to perform an index scan

based on the included columns, but if a query references these columns, the index

will function as a covering one.

The following example shows how to replace an automatically created primary key

index by another index with an included column:

=> CREATE UNIQUE INDEX ON bookings(book_ref) INCLUDE (book_date);

=> BEGIN;

=> ALTER TABLE bookings

DROP CONSTRAINT bookings_pkey CASCADE;

386

20.3 Bitmap Scans

NOTICE: drop cascades to constraint tickets_book_ref_fkey on table

tickets

ALTER TABLE

=> ALTER TABLE bookings ADD CONSTRAINT bookings_pkey PRIMARY KEY

USING INDEX bookings_book_ref_book_date_idx; -- a new index

NOTICE: ALTER TABLE / ADD CONSTRAINT USING INDEX will rename index

"bookings_book_ref_book_date_idx" to "bookings_pkey"

ALTER TABLE

=> ALTER TABLE tickets

ADD FOREIGN KEY (book_ref) REFERENCES bookings(book_ref);

=> COMMIT;

=> EXPLAIN SELECT book_ref, book_date

FROM bookings WHERE book_ref < '100000';

QUERY PLAN

−−−

Index Only Scan using bookings_pkey on bookings (cost=0.43..437...

Index Cond: (book_ref < '100000'::bpchar)

(2 rows)

Such indexes are often called covering, but it is not quite correct. An index is considered

covering if the set of its columns covers all the columns required by a particular query. It

does not matter whether it involves any columns added by the ������� clause, or only key

columns are being used. Moreover, one and the same index can be covering for one query

but not for the other.

20.3 Bitmap Scans

The efficiency of an index scan is limited: as the correlation decreases, the number

of accesses to heap pages rises, and scanning becomes random rather than sequen-

tial. To overcome this limitation, Postgre��� can fetch all the ���s before accessing

the table and sort them in ascending order based on their page numbers.1 This is

exactly how bitmap scanning works, which is yet another common approach to pro-

cessing ���s. It can be used by those access methods that support the B����� S��� p. ���

property.

1 backend/access/index/indexam.c, index_getbitmap function

387

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/index/indexam.c;hb=REL_14_STABLE

Chapter 20 Index Scans

Unlike a regular index scan, this operation is represented in the query plan by two

nodes:

=> CREATE INDEX ON bookings(total_amount);

=> EXPLAIN

SELECT * FROM bookings WHERE total_amount = 48500.00;

QUERY PLAN

−−−

Bitmap Heap Scan on bookings (cost=54.63..7040.42 rows=2865 wid...

Recheck Cond: (total_amount = 48500.00)

−> Bitmap Index Scan on bookings_total_amount_idx

(cost=0.00..53.92 rows=2865 width=0)

Index Cond: (total_amount = 48500.00)

(5 rows)

The Bitmap Index Scan1 node gets the bitmap of all ���s2 from the access method.

The bitmap consists of separate segments, each corresponding to a single heap

page. All these segments have the same size, which is enough for all the page

tuples, no matter how many of them are present. This number is limited because

a tuple header is quite large; a standard-size page can accommodate ��� tuples at

the most, which fit �� bytes.3

Then the Bitmap Heap Scan4 traverses the bitmap segment by segment, reads the

corresponding pages, and checks all their tuples that are marked all-visible. Thus,

pages are read in ascending order based on their numbers, and each of them is read

exactly once.

That said, this process is not the same as sequential scanning since the accessed

pages rarely follow each other. Regular prefetching performed by the operating

system does not help in this case, so the Bitmap Heap Scan node implements its

own prefetching by asynchronously reading1 effective_io_concurrency pages—and it

is the only node that does it. This mechanism relies on the posix_fadvise function

implemented by some operating systems. If your system supports this function, it

makes sense to configure the effective_io_concurrency parameter at the tablespace

level in accordance with the hardware capabilities.

1 backend/executor/nodeBitmapIndexscan.c
2 backend/access/index/indexam.c, index_getbitmap function
3 backend/nodes/tidbitmap.c
4 backend/executor/nodeBitmapHeapscan.c

388

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/executor/nodeBitmapIndexscan.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/index/indexam.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/nodes/tidbitmap.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/executor/nodeBitmapHeapscan.c;hb=REL_14_STABLE

20.3 Bitmap Scans

Asynchronous prefetching is also used by some other internal processes:

• for index pages when heap rows are being deleted1 v. ��

• for heap pages during analysis (�������)2 v. ��

The prefetch depth is defined by the 10maintenance_io_concurrency .

Bitmap Accuracy

Themore pages contain the tuples that satisfy the filter condition of the query, the

bigger is the bitmap. It is built in the local memory of the backend, and its size is

limited by the 4MBwork_mem parameter. Once the maximum allowed size is reached,

some bitmap segments become lossy: each bit of a lossy segment corresponds to a

whole page, while the segment itself comprises a range of pages.3 As a result, the

size of the bitmap becomes smaller at the expense of its accuracy.

The ������� ������� command shows the accuracy of the built bitmap:

=> EXPLAIN (analyze, costs off, timing off, summary off)

SELECT * FROM bookings WHERE total_amount > 150000.00;

QUERY PLAN

−−−

Bitmap Heap Scan on bookings (actual rows=242691 loops=1)

Recheck Cond: (total_amount > 150000.00)

Heap Blocks: exact=13447

−> Bitmap Index Scan on bookings_total_amount_idx (actual rows...

Index Cond: (total_amount > 150000.00)

(5 rows)

Here we have enough memory for an exact bitmap.

If we decrease the work_mem value, some of the bitmap segments become lossy:

=> SET work_mem = '512kB';

1 backend/access/heap/heapam.c, index_delete_prefetch_buffer function
2 backend/commands/analyze.c, acquire_sample_rows function
3 backend/nodes/tidbitmap.c, tbm_lossify function

389

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/heap/heapam.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/commands/analyze.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/nodes/tidbitmap.c;hb=REL_14_STABLE

Chapter 20 Index Scans

=> EXPLAIN (analyze, costs off, timing off, summary off)

SELECT * FROM bookings WHERE total_amount > 150000.00;

QUERY PLAN

−−−

Bitmap Heap Scan on bookings (actual rows=242691 loops=1)

Recheck Cond: (total_amount > 150000.00)

Rows Removed by Index Recheck: 1145721

Heap Blocks: exact=5178 lossy=8269

−> Bitmap Index Scan on bookings_total_amount_idx (actual rows...

Index Cond: (total_amount > 150000.00)

(6 rows)

=> RESET work_mem;

When reading a heap page that corresponds to a lossy bitmap segment, Postgre���

has to recheck the filter condition for each tuple in the page. The condition to be

rechecked is always displayed in the plan as Recheck Cond, even if this recheck is

not performed. The number of tuples filtered out during a recheck is displayed

separately (as Rows Removed by Index Recheck).

If the size of the result set is too big, the bitmap may not fit the work_mem memory chunk,

even if all its segments are lossy. Then this limit is ignored, and the bitmap takes as much

space as required. Postgre��� neither further reduces the bitmap accuracy nor flushes any

of its segments to disk.

Operations on Bitmaps

If the query applies conditions to several table columns that have separate indexes

created on them, a bitmap scan can use several indexes together.1 All these indexes

have their own bitmaps built on the fly; the bitmaps are then combined together

bit by bit, using either logical conjunction (if the expressions are connected by ���)

or logical disjunction (if the expressions are connected by ��). For example:

=> EXPLAIN (costs off)

SELECT * FROM bookings

WHERE book_date < '2016-08-28'

AND total_amount > 250000;

1 postgresql.org/docs/14/indexes-ordering.html

390

https://postgresql.org/docs/14/indexes-ordering.html

20.3 Bitmap Scans

QUERY PLAN

−−−

Bitmap Heap Scan on bookings

Recheck Cond: ((total_amount > '250000'::numeric) AND (book_da...

−> BitmapAnd

−> Bitmap Index Scan on bookings_total_amount_idx

Index Cond: (total_amount > '250000'::numeric)

−> Bitmap Index Scan on bookings_book_date_idx

Index Cond: (book_date < '2016−08−28 00:00:00+03'::tim...

(7 rows)

Here the BitmapAnd node combines two bitmaps using the bitwise ��� operation.

As two bitmaps are being merged into one,1 exact segments remain exact when

merged together (if the new bitmap fits the work_mem memory chunk), but if any

segment in a pair is lossy, the resulting segment will be lossy too.

Cost Estimation

Let’s take a look at the query that uses a bitmap scan:

=> EXPLAIN

SELECT * FROM bookings WHERE total_amount = 28000.00;

QUERY PLAN

−−−

Bitmap Heap Scan on bookings (cost=599.48..14444.96 rows=31878 ...

Recheck Cond: (total_amount = 28000.00)

−> Bitmap Index Scan on bookings_total_amount_idx

(cost=0.00..591.51 rows=31878 width=0)

Index Cond: (total_amount = 28000.00)

(5 rows)

The approximate selectivity of the condition used by the planner equals

=> SELECT round(31878::numeric/reltuples::numeric, 4)

FROM pg_class WHERE relname = 'bookings';

round

−−−−−−−−

0.0151

(1 row)

1 backend/nodes/tidbitmap.c, tbm_union & tbm_intersect functions

391

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/nodes/tidbitmap.c;hb=REL_14_STABLE

Chapter 20 Index Scans

The total cost of the Bitmap Index Scan node is estimated in the same way as the

cost of a regular index scan that does not take heap access into account:

=> SELECT round(

current_setting('random_page_cost')::real * pages +

current_setting('cpu_index_tuple_cost')::real * tuples +

current_setting('cpu_operator_cost')::real * tuples

)

FROM (

SELECT relpages * 0.0151 AS pages, reltuples * 0.0151 AS tuples

FROM pg_class WHERE relname = 'bookings_total_amount_idx'

) c;

round

−−−−−−−

589

(1 row)

The �/� cost estimation for the Bitmap Heap Scan node differs from that for a

perfect-correlation case of a regular index scan. A bitmap allows reading heap

pages in ascending order based on their numbers, without getting back to one and

the same page, but the tuples that satisfy the filter condition do not follow each

other anymore. Instead of reading a strictly sequential page range that is quite

compact, Postgre��� is likely to access far more pages.

The number of pages to be read is estimated by the following formula:1

min(
2 relpages ⋅ reltuples ⋅ sel
2 relpages + reltuples ⋅ sel

, relpages)

The estimated cost of reading a single page falls between seq_page_cost and ran-

dom_page_cost, depending on the ratio of the fraction of fetched pages to the total

number of pages in the table:

1 backend/optimizer/path/costsize.c, compute_bitmap_pages function

392

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/optimizer/path/costsize.c;hb=REL_14_STABLE

20.3 Bitmap Scans

=> WITH t AS (

SELECT relpages,

least(

(2 * relpages * reltuples * 0.0151) /

(2 * relpages + reltuples * 0.0151),

relpages

) AS pages_fetched,

round(reltuples * 0.0151) AS tuples_fetched,

current_setting('random_page_cost')::real AS rnd_cost,

current_setting('seq_page_cost')::real AS seq_cost

FROM pg_class WHERE relname = 'bookings'

)

SELECT pages_fetched,

rnd_cost - (rnd_cost - seq_cost) *

sqrt(pages_fetched / relpages) AS cost_per_page,

tuples_fetched

FROM t;

pages_fetched | cost_per_page | tuples_fetched

−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−

13447 | 1 | 31878

(1 row)

As usual, the �/� estimation is increased by the cost of processing each fetched

tuple. If an exact bitmap is used, the number of tuples is estimated at the total

number of tuples in the table multiplied by the selectivity of filter conditions. But

if any bitmap segments are lossy, Postgre��� has to access the corresponding pages

to recheck all their tuples.

a lossy bitmap segment an exact segment

Thus, the estimation v. ��takes into account the expected fraction of lossy bitmap seg-

ments (which can be calculated based on the total number of selected rows and the

bitmap size limit defined by work_mem).1

1 backend/optimizer/path/costsize.c, compute_bitmap_pages function

393

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/optimizer/path/costsize.c;hb=REL_14_STABLE

Chapter 20 Index Scans

The total cost of condition rechecks also increases the estimation (regardless of

the bitmap accuracy).

The startup cost estimation of the Bitmap Heap Scan node is based on the total cost

of the Bitmap Index Scan node, which is extended by the cost of bitmap processing:

QUERY PLAN

−−−

Bitmap Heap Scan on bookings

(cost=599.48..14444.96 rows=31878 width=21)

Recheck Cond: (total_amount = 28000.00)

−> Bitmap Index Scan on bookings_total_amount_idx

(cost=0.00..591.51 rows=31878 width=0)

Index Cond: (total_amount = 28000.00)

(6 rows)

Here the bitmap is exact, and the cost is estimated roughly as follows:1

=> WITH t AS (

SELECT 1 AS cost_per_page,

13447 AS pages_fetched,

31878 AS tuples_fetched

),

costs(startup_cost, run_cost) AS (

SELECT

(SELECT round(

589 /* cost estimation for the child node */ +

0.1 * current_setting('cpu_operator_cost')::real *

reltuples * 0.0151

)

FROM pg_class WHERE relname = 'bookings_total_amount_idx'

),

(SELECT round(

cost_per_page * pages_fetched +

current_setting('cpu_tuple_cost')::real * tuples_fetched +

current_setting('cpu_operator_cost')::real * tuples_fetched

)

FROM t

)

)

SELECT startup_cost, run_cost,

startup_cost + run_cost AS total_cost

FROM costs;

1 backend/optimizer/path/costsize.c, cost_bitmap_heap_scan function

394

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/optimizer/path/costsize.c;hb=REL_14_STABLE

20.4 Parallel Index Scans

startup_cost | run_cost | total_cost

−−−−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−−−

597 | 13845 | 14442

(1 row)

If the query plan combines several bitmaps, the sum of the costs of separate index

scans is increased by a (small) cost of merging them together.1

20.4 Parallel Index Scans

All the index scanning modes v. �.�—a regular index scan, an index-only scan, and a

bitmap scan—have their own flavors for parallel p. ���plans.

The cost of parallel execution is estimated in the same way as that of sequen-

tial one, but (just like in the case of a parallel sequential scan) ��� resources are

distributed between all parallel processes, thus reducing the total cost. The �/�

component of the cost is not distributed because processes are synchronized to

perform page access sequentially.

Now let me show you several examples of parallel plans without breaking down

their cost estimation.

A parallel index scan:

=> EXPLAIN SELECT sum(total_amount)

FROM bookings WHERE book_ref < '400000';

QUERY PLAN

−−−

Finalize Aggregate (cost=19192.81..19192.82 rows=1 width=32)

−> Gather (cost=19192.59..19192.80 rows=2 width=32)

Workers Planned: 2

−> Partial Aggregate (cost=18192.59..18192.60 rows=1 widt...

−> Parallel Index Scan using bookings_pkey on bookings

(cost=0.43..17642.82 rows=219907 width=6)

Index Cond: (book_ref < '400000'::bpchar)

(7 rows)

1 backend/optimizer/path/costsize.c, cost_bitmap_and_node & cost_bitmap_or_node functions

395

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/optimizer/path/costsize.c;hb=REL_14_STABLE

Chapter 20 Index Scans

While a parallel scan of a �-tree is in progress, the �� of the current index page

is kept in the server’s shared memory. The initial value is set by the process that

starts the scan: it traverses the tree from the root to the first suitable leaf page and

saves its ��. Workers access subsequent index pages as needed, replacing the saved

��. Having fetched a page, the worker iterates through all its suitable entries and

reads the corresponding heap tuples. The scanning completes when the worker

has read the whole range of values that satisfy the query filter.

A parallel index-only scan:

=> EXPLAIN SELECT sum(total_amount)

FROM bookings WHERE total_amount < 50000.00;

QUERY PLAN

−−−

Finalize Aggregate (cost=23370.60..23370.61 rows=1 width=32)

−> Gather (cost=23370.38..23370.59 rows=2 width=32)

Workers Planned: 2

−> Partial Aggregate (cost=22370.38..22370.39 rows=1 widt...

−> Parallel Index Only Scan using bookings_total_amoun...

(cost=0.43..21387.27 rows=393244 width=6)

Index Cond: (total_amount < 50000.00)

(7 rows)

A parallel index-only scan skips heap access for all-visible pages; it is the only

difference it has from a parallel index scan.

A parallel bitmap scan:

=> EXPLAIN SELECT sum(total_amount)

FROM bookings WHERE book_date < '2016-10-01';

QUERY PLAN

−−−

Finalize Aggregate (cost=21492.21..21492.22 rows=1 width=32)

−> Gather (cost=21491.99..21492.20 rows=2 width=32)

Workers Planned: 2

−> Partial Aggregate (cost=20491.99..20492.00 rows=1 widt...

−> Parallel Bitmap Heap Scan on bookings

(cost=4891.17..20133.01 rows=143588 width=6)

Recheck Cond: (book_date < '2016−10−01 00:00:00+03...

−> Bitmap Index Scan on bookings_book_date_idx

(cost=0.00..4805.01 rows=344611 width=0)

Index Cond: (book_date < '2016−10−01 00:00:00+...

(10 rows)

396

20.5 Comparison of Various Access Methods

A bitmap scan implies that a bitmap is always built sequentially, by a single leader

process; for this reason, the name of the Bitmap Index Scan node does not contain

the word Parallel. When the bitmap is ready, the Parallel Bitmap Heap Scan node

starts a parallel heap scan. Workers access subsequent heap pages and process

them concurrently.

20.5 Comparison of Various Access Methods

The following illustration shows how costs of various access methods depend on

selectivity of filter conditions:

selectivity

cost

0 1

index-
only s

can

bitm
ap in

dex s
can

inde
x sc

an

seq scan

It is a qualitative diagram; the actual figures are of course dependent on the par-

ticular table and server configuration.

Sequential scanning does not depend on selectivity, and starting from a certain

fraction of selected rows, it is usually more efficient than other methods.

The cost of an index scan is affected by the correlation between the physical order

of tuples and the order in which their ��s are returned by the access method. If

the correlation is perfect, an index scan can be quite efficient even if the fraction

397

Chapter 20 Index Scans

of selected rows is rather high. However, for low correlation (which is much more

common) it can quickly become even more expensive than a sequential scan. That

said, index scanning is still an absolute leader when it comes to selecting a single

row using an index (typically a unique one).

If applicable, index-only scans can show great performance and beat sequential

scans even if all the rows are selected. However, their performance is highly de-

pendent on the visibility map, and in the worst-case scenario an index-only scan

can degrade to a regular index scan.

The cost of a bitmap scan is affected by the size of available memory, but to amuch

lesser extent than an index scan cost depends on correlation. If the correlation is

low, the bitmap scan turns out to be much cheaper.

Each access method has its own perfect usage scenarios; there is no such method

that always outperforms other methods. The planner has to do extensive calcu-

lations to estimate the efficiency of each method in each particular case. Clearly,

the accuracy of these estimations highly depends on the accuracy of the collected

statistics.

398

21
Nested Loop

21.1 Join Types and Methods

Joins are a key feature of the ��� language; they serve as the foundation for its

power and flexibility. Sets of rows (either retrieved from tables directly or received

as the result of some other operations) are always joined pairwise.

There are several types of joins:

Inner joins. An inner join (specified as ����� ����, or simply ����) comprises those

pairs of rows of two sets that satisfy a particular join condition. The join con-

dition combines some columns of one set of rows with some columns of the

other set; all the columns involved constitute the join key.

If the join condition demands that join keys of two sets be equal, such a join

is called an equi-join; this is the most common join type.

A Cartesian product (����� ����) of two sets comprises all the possible pairs of

rows of these sets—it is a special case of an inner join with a true condition.

Outer joins. A left outer join (specified as ���� ����� ����, or simply ���� ����) ex-

tends the result of an inner join by those rows of the left set that have no

match in the right set (the corresponding right-side columns are filled with

���� values).

The same is also true for a right outer join (����� ����), down to the permutation

of sets.

A full outer join (specified as ���� ����) comprises left and right outer joins,

adding both right-side and left-side rows for which no match has been found.

399

Chapter 21 Nested Loop

Anti-Joins and Semi-Joins. A semi-join looks a lot like an inner join, but it includes

only those rows of the left set that have a match in the right set (a row is

included only once even if there are several matches).

An anti-join includes those rows of a set that have no match in the other set.

The ��� language has no explicit semi- and anti-joins, but the same outcome

can be achieved using predicates like ������ and ��� ������.

All these joins are logical operations. For example, an inner join is often described

as a Cartesian product that has been cleared of the rows that do not satisfy the

join condition. But at the physical level, an inner join is typically achieved via less

expensive means.

Postgre��� provides several join methods:

• a nested loop join

• a hash join

• a merge join

Joinmethods are algorithms that implement logical operations of ��� joins. These

basic algorithms often have special flavors tailored for particular join types, even

though they may support only some of them. For example, a nested loop supports

an inner join (represented in the plan by a Nested Loop node) and a left outer join

(represented by a Nested Loop Left Join node), but it cannot be used for full joins.

Some flavors of the same algorithms can also be used by other operations, such as

aggregation.

Different join methods perform best in different conditions; it is the job of the

planner to choose the most cost-effective one.

21.2 Nested Loop Joins

The basic algorithm of the nested loop join functions as follows. The outer loop

traverses all the rows of the first set (called the outer set). For each of these rows,

400

21.2 Nested Loop Joins

the nested loop goes through the rows of the second set (called the inner set) to find

the ones that satisfy the join condition. Each found pair is returned immediately

as part of the query result.1

The algorithm accesses the inner set as many times as there are rows in the outer

set. Therefore, the efficiency of nested loop joins depends on several factors:

• cardinality of the outer set of rows

• availability of an access method that can efficiently fetch the needed rows of

the inner set

• recurrent access to the same rows of the inner set

Cartesian Product

A nested loop join is the most efficient way to find a Cartesian product, regardless

of the number of rows in the sets:

=> EXPLAIN SELECT * FROM aircrafts_data a1

CROSS JOIN aircrafts_data a2

WHERE a2.range > 5000;

QUERY PLAN

−−−

Nested Loop (cost=0.00..2.78 rows=45 width=144)

−> Seq Scan on aircrafts_data a1

(cost=0.00..1.09 rows=9 width=72)

−> Materialize (cost=0.00..1.14 rows=5 width=72)

−> Seq Scan on aircrafts_data a2

(cost=0.00..1.11 rows=5 width=72)

Filter: (range > 5000)

(7 rows)

inner set

outer set

The Nested Loop node performs a join using the algorithm described above. It al-

ways has two child nodes: the one that is displayed higher in the plan corresponds

to the outer set of rows, while the lower one represents the inner set.

1 backend/executor/nodeNestloop.c

401

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/executor/nodeNestloop.c;hb=REL_14_STABLE

Chapter 21 Nested Loop

In this example, the inner set is represented by theMaterialize node.1 This node re-

turns the rows received from its child node, having saved them for future use (the

rows are accumulated in memory until their total size reaches4MB work_mem; then

Postgre��� starts spilling them into a temporary file on disk). If accessed again,

the node reads the accumulated rows without calling the child node. Thus, the ex-

ecutor can avoid scanning the full table again and read only those rows that satisfy

the condition.

A similar plan can also be built for a query that uses a regular equi-join:

=> EXPLAIN SELECT *

FROM tickets t

JOIN ticket_flights tf ON tf.ticket_no = t.ticket_no

WHERE t.ticket_no = '0005432000284';

QUERY PLAN

−−

Nested Loop (cost=0.99..25.05 rows=3 width=136)

−> Index Scan using tickets_pkey on tickets t

(cost=0.43..8.45 rows=1 width=104)

Index Cond: (ticket_no = '0005432000284'::bpchar)

−> Index Scan using ticket_flights_pkey on ticket_flights tf

(cost=0.56..16.58 rows=3 width=32)

Index Cond: (ticket_no = '0005432000284'::bpchar)

(7 rows)

Having recognized the equality of the two values, the planner replaces the join

condition tf.ticket_no = t.ticket_no by the tf.ticket_no = constant condition, virtually

reducing an equi-join to a Cartesian product.2

Cardinality estimation. The cardinality of a Cartesian product is estimated at the

product of cardinalities of the joined data sets: 3 = 1 × 3.

Cost estimation. The startup cost of the join operation combines the startup costs

of all child nodes.

1 backend/executor/nodeMaterial.c
2 backend/optimizer/path/equivclass.c

402

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/executor/nodeMaterial.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/optimizer/path/equivclass.c;hb=REL_14_STABLE

21.2 Nested Loop Joins

The full cost of the join includes the following components:

• the cost of fetching all the rows of the outer set

• the cost of a single retrieval of all the rows of the inner set (since the cardinality

estimation of the outer set equals one)

• the cost of processing each row to be returned

Here is a dependency graph for the cost estimation:

QUERY PLAN

−−

Nested Loop (cost=0.99..25.05 rows=3 width=136)

−> Index Scan using tickets_pkey on tickets t

(cost=0.43..8.45 rows=1 width=104)

Index Cond: (ticket_no = '0005432000284'::bpchar)

−> Index Scan using ticket_flights_pkey on ticket_flights tf

(cost=0.56..16.58 rows=3 width=32)

Index Cond: (ticket_no = '0005432000284'::bpchar)

(7 rows)

× 1

The cost of the join is calculated as follows:

=> SELECT 0.43 + 0.56 AS startup_cost,

round((

8.45 + 16.57 +

3 * current_setting('cpu_tuple_cost')::real

)::numeric, 2) AS total_cost;

startup_cost | total_cost

−−−−−−−−−−−−−−+−−−−−−−−−−−−

0.99 | 25.05

(1 row)

Now let’s get back to the previous example:

=> EXPLAIN SELECT *

FROM aircrafts_data a1

CROSS JOIN aircrafts_data a2

WHERE a2.range > 5000;

403

Chapter 21 Nested Loop

QUERY PLAN

−−−

Nested Loop (cost=0.00..2.78 rows=45 width=144)

−> Seq Scan on aircrafts_data a1

(cost=0.00..1.09 rows=9 width=72)

−> Materialize (cost=0.00..1.14 rows=5 width=72)

−> Seq Scan on aircrafts_data a2

(cost=0.00..1.11 rows=5 width=72)

Filter: (range > 5000)

(7 rows)

The plan now contains the Materialize node; having once accumulated the rows

received from its child node, Materialize returns them much faster for all the sub-

sequent calls.

In general, the total cost of a join comprises the following expenses:1

• the cost of fetching all the rows of the outer set

• the cost of the initial fetch of all the rows of the inner set (during which ma-

terialization is performed)

• (N−1)-fold cost of repeat fetches of rows of the inner set (hereN is the number

of rows in the outer set)

• the cost of processing each row to be returned

The dependency graph here is as follows:

QUERY PLAN

−−

Nested Loop (cost=0.00..2.78 rows=45 width=144)

−> Seq Scan on aircrafts_data a1

(cost=0.00..1.09 rows=9 width=72)

−> Materialize

(cost=0.00..1.14 rows=5 width=72)

−> Seq Scan on aircrafts_data a2

(cost=0.00..1.11 rows=5 width=72)

Filter: (range > 5000)

(8 rows)

× 9

1 backend/optimizer/path/costsize.c, initial_cost_nestloop andfinal_cost_nestloop function

404

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/optimizer/path/costsize.c;hb=REL_14_STABLE

21.2 Nested Loop Joins

In this example, materialization reduces the cost of repeat data fetches. The cost

of the first Materialize call is shown in the plan, but all the subsequent calls are

not listed. I will not provide any calculations here,1 but in this particular case the

estimation is �.����.

Thus, the cost of the join performed in this example is calculated as follows:

=> SELECT 0.00 + 0.00 AS startup_cost,

round((

1.09 + (1.14 + 8 * 0.0125) +

45 * current_setting('cpu_tuple_cost')::real

)::numeric, 2) AS total_cost;

startup_cost | total_cost

−−−−−−−−−−−−−−+−−−−−−−−−−−−

0.00 | 2.78

(1 row)

Parameterized Joins

Now let’s consider a more common example that does not boil down to a Cartesian

product:

=> CREATE INDEX ON tickets(book_ref);

=> EXPLAIN SELECT *

FROM tickets t

JOIN ticket_flights tf ON tf.ticket_no = t.ticket_no

WHERE t.book_ref = '03A76D';

QUERY PLAN

−−

Nested Loop (cost=0.99..45.68 rows=6 width=136)

−> Index Scan using tickets_book_ref_idx on tickets t

(cost=0.43..12.46 rows=2 width=104)

Index Cond: (book_ref = '03A76D'::bpchar)

−> Index Scan using ticket_flights_pkey on ticket_flights tf

(cost=0.56..16.58 rows=3 width=32)

Index Cond: (ticket_no = t.ticket_no)

(7 rows)

1 backend/optimizer/path/costsize.c, cost_rescan function

405

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/optimizer/path/costsize.c;hb=REL_14_STABLE

Chapter 21 Nested Loop

Here theNested Loop node traverses the rows of the outer set (tickets), and for each

of these rows it searches for the corresponding rows of the inner set (flights), pass-

ing the ticket number (t.ticket_no) to the condition as a parameter. When the inner

node (Index Scan) is called, it has to deal with the condition ticket_no = constant.

Cardinality estimation. The planner estimates that the filter condition by a book-

ing number is satisfied by two rows of the outer set (rows=2), and each of these

rows matches three rows of the inner set on average (rows=3).

Join selectivity is a fraction of the Cartesian product of the two sets that remains

after the join. It is obvious that we must exclude those rows of both sets that con-

tain ���� values in the join key since the equality condition will never be satisfied

for them.

The estimated cardinality equals the cardinality of the Cartesian product (that is,

the product of cardinalities of the two sets) multiplied by the selectivity.1

Here the estimated cardinality of the first (outer) set is two rows. Since no condi-

tions are applied to the second (inner) set except for the join condition itself, the

cardinality of the second set is taken as the cardinality of the ticket_flights table.

Since the joined tables are connected by a foreign key, the selectivity estimation

relies on the fact that each row of the child table has exactly one matching row in

the parent table. So the selectivity is taken as the inverse of the size of the table

referred to by the foreign key.2

Thus, for the case when the ticket_no columns contain no ���� values, the estima-

tion is as follows:

=> SELECT round(2 * tf.reltuples * (1.0 / t.reltuples)) AS rows

FROM pg_class t, pg_class tf

WHERE t.relname = 'tickets'

AND tf.relname = 'ticket_flights';

rows

−−−−−−

6

(1 row)

1 backend/optimizer/path/costsize.c, calc_joinrel_size_estimate function
2 backend/optimizer/path/costsize.c, get_foreign_key_join_selectivity function

406

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/optimizer/path/costsize.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/optimizer/path/costsize.c;hb=REL_14_STABLE

21.2 Nested Loop Joins

Clearly, tables can be also joined without using foreign keys. Then the selectivity

will be taken as the estimated selectivities of the particular join conditions.1

For the equi-join in this example, the generic formula for selectivity estimation

that assumes uniformdistribution of values looks as follows: min(
1

nd1
, 1

nd2),where

nd1 and nd2 represent the number of distinct p. ���values of the join key in the first and

second set, respectively.2

Statistics on distinct values show that ticket numbers in the tickets table are unique

(which is only to be expected, as the ticket_no column is the primary key), and the

ticket_flights has about three matching rows for each ticket:

=> SELECT t.n_distinct, tf.n_distinct

FROM pg_stats t, pg_stats tf

WHERE t.tablename = 'tickets' AND t.attname = 'ticket_no'

AND tf.tablename = 'ticket_flights' AND tf.attname = 'ticket_no';

n_distinct | n_distinct

−−−−−−−−−−−−+−−−−−−−−−−−−−

−1 | −0.30362356

(1 row)

The result would match the estimation for the join with the foreign key:

=> SELECT round(2 * tf.reltuples *

least(1.0/t.reltuples, 1.0/tf.reltuples/0.30362356)

) AS rows

FROM pg_class t, pg_class tf

WHERE t.relname = 'tickets' AND tf.relname = 'ticket_flights';

rows

−−−−−−

6

(1 row)

The planner tries to refine this baseline estimation whenever possible. It cannot

use histograms at the moment, but it takes ��� lists p. ���into account if such statistics

have been collected on the join key for both tables.3 The selectivity of the rows

that appear in the list can be estimated more accurately, and only the remaining

rows will have to rely on calculations that are based on uniform distribution.

1 backend/optimizer/path/clausesel.c, clauselist_selectivity function
2 backend/utils/adt/selfuncs.c, eqjoinsel function
3 backend/utils/adt/selfuncs.c, eqjoinsel function

407

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/optimizer/path/clausesel.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/utils/adt/selfuncs.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/utils/adt/selfuncs.c;hb=REL_14_STABLE

Chapter 21 Nested Loop

In general, join selectivity estimation is likely to bemore accurate if the foreign key

is defined. It is especially true for composite join keys, as the selectivity is often

largely underestimated in this case.

Using the ������� ������� command, you can view not only the actual number of

rows, but also the number of times the inner loop has been executed:

=> EXPLAIN (analyze, timing off, summary off) SELECT *

FROM tickets t

JOIN ticket_flights tf ON tf.ticket_no = t.ticket_no

WHERE t.book_ref = '03A76D';

QUERY PLAN

−−−

Nested Loop (cost=0.99..45.68 rows=6 width=136)

(actual rows=8 loops=1)

−> Index Scan using tickets_book_ref_idx on tickets t

(cost=0.43..12.46 rows=2 width=104) (actual rows=2 loops=1)

Index Cond: (book_ref = '03A76D'::bpchar)

−> Index Scan using ticket_flights_pkey on ticket_flights tf

(cost=0.56..16.58 rows=3 width=32) (actual rows=4 loops=2)

Index Cond: (ticket_no = t.ticket_no)

(8 rows)

The outer set contains two rows (actual rows=2); the estimation has been correct.

So the Index Scan node was executed twice (loops=2), and each time it selected four

rows on average (actual rows=4). Hence the total number of found rows: actual

rows=8.

I do not show the execution time of each stage of the plan (������ ���) for the output to fit

the limited width of the page; besides, on some platforms an output with timing enabled

can significantly slow down query execution. But if we did include it, Postgre��� would

display an average value, just like for the row count. To get the total execution time, you

should multiply this value by the number of iterations (loops).

Cost estimation. The cost estimation formula here is the same as in the previous

examples.

Let’s recall our query plan:

408

21.2 Nested Loop Joins

=> EXPLAIN SELECT *

FROM tickets t

JOIN ticket_flights tf ON tf.ticket_no = t.ticket_no

WHERE t.book_ref = '03A76D';

QUERY PLAN

−−

Nested Loop (cost=0.99..45.68 rows=6 width=136)

−> Index Scan using tickets_book_ref_idx on tickets t

(cost=0.43..12.46 rows=2 width=104)

Index Cond: (book_ref = '03A76D'::bpchar)

−> Index Scan using ticket_flights_pkey on ticket_flights tf

(cost=0.56..16.58 rows=3 width=32)

Index Cond: (ticket_no = t.ticket_no)

(7 rows)

In this case, the cost of each subsequent scan of the inner set is the same as that

of the first scan. So we ultimately get the following figures:

=> SELECT 0.43 + 0.56 AS startup_cost,

round((

12.46 + 2 * 16.57 +

6 * current_setting('cpu_tuple_cost')::real

)::numeric, 2) AS total_cost;

startup_cost | total_cost

−−−−−−−−−−−−−−+−−−−−−−−−−−−

0.99 | 45.66

(1 row)

Caching Rows (Memoization) v. ��

If the inner set is repeatedly scanned with the same parameter values (thus giving

the same results), it may turn out to be beneficial to cache the rows of this set.

Such caching is performed by the Memoize1 node. Being similar to the Materialize

node, it is designed to handle parameterized joins and has a much more complex

implementation:

1 backend/executor/nodeMemoize.c

409

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/executor/nodeMemoize.c;hb=REL_14_STABLE

Chapter 21 Nested Loop

• The Materialize node simply materializes all the rows returned by its child

node, while Memoize ensures that the rows returned for different parameter

values are kept separately.

• In the event of an overflow, theMaterialize storage starts spilling rows to disk,

while Memoize keeps all the rows in memory (there would otherwise be no

point in caching).

Here is an example of a query that uses Memoize:

=> EXPLAIN SELECT *

FROM flights f

JOIN aircrafts_data a ON f.aircraft_code = a.aircraft_code

WHERE f.flight_no = 'PG0003';

QUERY PLAN

−−−

Nested Loop (cost=5.44..387.10 rows=113 width=135)

−> Bitmap Heap Scan on flights f

(cost=5.30..382.22 rows=113 width=63)

Recheck Cond: (flight_no = 'PG0003'::bpchar)

−> Bitmap Index Scan on flights_flight_no_scheduled_depart...

(cost=0.00..5.27 rows=113 width=0)

Index Cond: (flight_no = 'PG0003'::bpchar)

−> Memoize (cost=0.15..0.27 rows=1 width=72)

Cache Key: f.aircraft_code

Cache Mode: logical

−> Index Scan using aircrafts_pkey on aircrafts_data a

(cost=0.14..0.26 rows=1 width=72)

Index Cond: (aircraft_code = f.aircraft_code)

(13 rows)

The size of the memory chunk used to store cached rows equals4MB work_mem ×
×1.0 hash_mem_multiplier. As implied by the second parameter’s name, cached rows

are stored in a hash table (with open addressing).1 The hash key (shown as Cache

Key in the plan) is the parameter value (or several values if there aremore than one

parameter).

All the hash keys are bound into a list; one of its ends is considered cold (since it

contains the keys that have not been used for a long time), while the other is hot

(it stores recently used keys).

1 include/lib/simplehash.h

410

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/include/lib/simplehash.h;hb=REL_14_STABLE

21.2 Nested Loop Joins

If a call on the Memoize node shows that the passed parameter values correspond

to the already cached rows, these rows will be passed on to the parent node (Nested

Loop) without checking the child node. The used hash key is thenmoved to the hot

end of the list.

If the cache does not contain the required rows, theMemoize node pulls them from

its child node, caches them, and passes them on to the node above. The corre-

sponding hash key also becomes hot.

As new data is being cached, it can fill all the availablememory. To free some space,

the rows that correspond to cold keys get evicted. This eviction algorithm differs

from the one used in the buffer p. ���cache but serves the same purpose.

Some parameter values may turn out to have so many matching rows that they

do not fit into the allocated memory chunk, even if all the other rows are already

evicted. Such parameters are skipped—itmakes no sense to cache only some of the

rows since the next call will still have to get all the rows from the child node.

Cost and cardinality estimations. These calculations are quite similar to what we

have already seen above. We just have to bear in mind that the cost of theMemoize

node shown in the plan has nothing to do with its actual cost: it is simply the cost

of its child node increased by the 0.01cpu_tuple_cost value.1

We have already come across a similar situation for the Materialize node: its cost

is only calculated for subsequent scans2 and is not reflected in the plan.

Clearly, it only makes sense to useMemoize if it is cheaper than its child node. The

cost of each subsequent Memoize scan depends on the expected cache access pro-

file and the size of the memory chunk that can be used for caching. The calculated

value is highly dependent on the accurate estimation of the number of distinct

parameter values to be used in the scans of the inner set of rows.3 Based on this

number, you can weigh the probabilities of the rows to be cached and to be evicted

from the cache. The expected hits reduce the estimated cost, while potential evic-

tions increase it. We will skip the details of these calculations here.

1 backend/optimizer/util/pathnode.c, create_memoize_path function
2 backend/optimizer/path/costsize.c, cost_memoize_rescan function
3 backend/utils/adt/selfuncs.c, estimate_num_groups function

411

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/optimizer/util/pathnode.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/optimizer/path/costsize.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/utils/adt/selfuncs.c;hb=REL_14_STABLE

Chapter 21 Nested Loop

To figure out what is actually going on during query execution, we will use the

������� ������� command, as usual:

=> EXPLAIN (analyze, costs off, timing off, summary off)

SELECT * FROM flights f

JOIN aircrafts_data a ON f.aircraft_code = a.aircraft_code

WHERE f.flight_no = 'PG0003';

QUERY PLAN

−−−

Nested Loop (actual rows=113 loops=1)

−> Bitmap Heap Scan on flights f

(actual rows=113 loops=1)

Recheck Cond: (flight_no = 'PG0003'::bpchar)

Heap Blocks: exact=2

−> Bitmap Index Scan on flights_flight_no_scheduled_depart...

(actual rows=113 loops=1)

Index Cond: (flight_no = 'PG0003'::bpchar)

−> Memoize (actual rows=1 loops=113)

Cache Key: f.aircraft_code

Cache Mode: logical

Hits: 112 Misses: 1 Evictions: 0 Overflows: 0 Memory

Usage: 1kB

−> Index Scan using aircrafts_pkey on aircrafts_data a

(actual rows=1 loops=1)

Index Cond: (aircraft_code = f.aircraft_code)

(16 rows)

This query selects the flights that follow the same route and are performed by air-

craft of a particular type, so all the calls on the Memoize node use the same hash

key. The first row has to be fetched from the table (Misses: 1), but all the subse-

quent rows are found in the cache (Hits: 112). The whole operation takes just � k�

of memory.

The other two displayed values are zero: they represent the number of evictions

and the number of cache overflows when it was impossible to cache all the rows

related to a particular set of parameters. Large figures would indicate that the

allocated cache is too small, which might be caused by inaccurate estimation of

the number of distinct parameter values. Then the use of the Memoize node can

turn out to be quite expensive. In the extreme case, you can forbid the planner to

use caching by turning off theon enable_memoize parameter.

412

21.2 Nested Loop Joins

Outer Joins

The nested loop join can be used to perform the left outer join:

=> EXPLAIN SELECT *

FROM ticket_flights tf

LEFT JOIN boarding_passes bp ON bp.ticket_no = tf.ticket_no

AND bp.flight_id = tf.flight_id

WHERE tf.ticket_no = '0005434026720';

QUERY PLAN

−−−

Nested Loop Left Join (cost=1.12..33.35 rows=3 width=57)

Join Filter: ((bp.ticket_no = tf.ticket_no) AND (bp.flight_id =

tf.flight_id))

−> Index Scan using ticket_flights_pkey on ticket_flights tf

(cost=0.56..16.58 rows=3 width=32)

Index Cond: (ticket_no = '0005434026720'::bpchar)

−> Materialize (cost=0.56..16.62 rows=3 width=25)

−> Index Scan using boarding_passes_pkey on boarding_passe...

(cost=0.56..16.61 rows=3 width=25)

Index Cond: (ticket_no = '0005434026720'::bpchar)

(10 rows)

Here the join operation is represented by the Nested Loop Left Join node. The plan-

ner has chosen a non-parameterized join with a filter: it performs identical scans

of the inner set of rows (so this set is hidden behind the Materialize node) and re-

turns the rows that satisfy the filter condition (Join Filter).

The cardinality of the outer join is estimated just like the one of the inner join,

except that the calculated estimation is compared with the cardinality of the outer

set of rows, and the bigger value is taken as the final result.1 In other words, the

outer join never reduces the number of rows (but can increase it).

The cost estimation is similar to that of the inner join.

Wemust also keep inmind that the planner can select different plans for inner and

outer joins. Even this simple example will have a different Join Filter if the planner

is forced to use a nested loop join:

1 backend/optimizer/path/costsize.c, calc_joinrel_size_estimate function

413

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/optimizer/path/costsize.c;hb=REL_14_STABLE

Chapter 21 Nested Loop

=> SET enable_mergejoin = off;

=> EXPLAIN SELECT *

FROM ticket_flights tf

JOIN boarding_passes bp ON bp.ticket_no = tf.ticket_no

AND bp.flight_id = tf.flight_id

WHERE tf.ticket_no = '0005434026720';

QUERY PLAN

−−−

Nested Loop (cost=1.12..33.33 rows=3 width=57)

Join Filter: (tf.flight_id = bp.flight_id)

−> Index Scan using ticket_flights_pkey on ticket_flights tf

(cost=0.56..16.58 rows=3 width=32)

Index Cond: (ticket_no = '0005434026720'::bpchar)

−> Materialize (cost=0.56..16.62 rows=3 width=25)

−> Index Scan using boarding_passes_pkey on boarding_passe...

(cost=0.56..16.61 rows=3 width=25)

Index Cond: (ticket_no = '0005434026720'::bpchar)

(9 rows)

=> RESET enable_mergejoin;

A slight difference in the total cost is caused by the fact that the outer join must

also check ticket numbers to get the correct result if there is no match in the outer

set of rows.

Right joins are not supported,1 as the nested loop algorithm treats the inner and

outer sets differently. The outer set is scanned in full; as for the inner set, the index

access allows reading only those rows that satisfy the join condition, so some of its

rows may be skipped altogether.

A full join is not supported for the same reason.

Anti- and Semi-joins

Anti-joins and semi-joins are similar in the sense that for each row of the first

(outer) set it is enough to find only onematching row in the second (inner) set.

An anti-join returns the rows of the first set only if they have nomatch in the second

set: as soon as the executor finds the first matching row in the second set, it can

1 backend/optimizer/path/joinpath.c, match_unsorted_outer function

414

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/optimizer/path/joinpath.c;hb=REL_14_STABLE

21.2 Nested Loop Joins

exit the current loop: the corresponding row of the first set must be excluded from

the result.

Anti-joins can be used to compute the ��� ������ predicate.

For example, let’s find aircraft models with undefined cabin configuration. The

corresponding plan contains the Nested Loop Anti Join node:

=> EXPLAIN SELECT *

FROM aircrafts a

WHERE NOT EXISTS (

SELECT * FROM seats s WHERE s.aircraft_code = a.aircraft_code

);

QUERY PLAN

−−−

Nested Loop Anti Join (cost=0.28..4.65 rows=1 width=40)

−> Seq Scan on aircrafts_data ml (cost=0.00..1.09 rows=9 widt...

−> Index Only Scan using seats_pkey on seats s

(cost=0.28..5.55 rows=149 width=4)

Index Cond: (aircraft_code = ml.aircraft_code)

(5 rows)

An alternative query without the ��� ������ predicate will have the same plan:

=> EXPLAIN SELECT a.*

FROM aircrafts a

LEFT JOIN seats s ON a.aircraft_code = s.aircraft_code

WHERE s.aircraft_code IS NULL;

QUERY PLAN

−−−

Nested Loop Anti Join (cost=0.28..4.65 rows=1 width=40)

−> Seq Scan on aircrafts_data ml (cost=0.00..1.09 rows=9 widt...

−> Index Only Scan using seats_pkey on seats s

(cost=0.28..5.55 rows=149 width=4)

Index Cond: (aircraft_code = ml.aircraft_code)

(5 rows)

A semi-join returns those rows of the first set that have at least one match in the

second set (again, there is no need to check the set for other matches—the result

is already known).

A semi-join can be used to compute the ������ predicate. Let’s find the aircraft

models with seats installed in the cabin:

415

Chapter 21 Nested Loop

=> EXPLAIN SELECT *

FROM aircrafts a

WHERE EXISTS (

SELECT * FROM seats s

WHERE s.aircraft_code = a.aircraft_code

);

QUERY PLAN

−−−

Nested Loop Semi Join (cost=0.28..6.67 rows=9 width=40)

−> Seq Scan on aircrafts_data ml (cost=0.00..1.09 rows=9 widt...

−> Index Only Scan using seats_pkey on seats s

(cost=0.28..5.55 rows=149 width=4)

Index Cond: (aircraft_code = ml.aircraft_code)

(5 rows)

The Nested Loop Semi Join node represents the same-name join method. This plan

(just like the anti-join plans above) provides the basic estimation of the number

of rows in the seats table (rows=149), although it is enough to retrieve only one of

them. The actual query execution stops after fetching the first row, of course:

=> EXPLAIN (analyze, costs off, timing off, summary off)

SELECT * FROM aircrafts a

WHERE EXISTS (

SELECT * FROM seats s

WHERE s.aircraft_code = a.aircraft_code

);

QUERY PLAN

−−

Nested Loop Semi Join (actual rows=9 loops=1)

−> Seq Scan on aircrafts_data ml (actual rows=9 loops=1)

−> Index Only Scan using seats_pkey on seats s

(actual rows=1 loops=9)

Index Cond: (aircraft_code = ml.aircraft_code)

Heap Fetches: 0

(6 rows)

Cardinality estimation. The selectivity of a semi-join is estimated in the usual

manner, except that the cardinality of the inner set is taken as one. For anti-joins,

the estimated selectivity is subtracted from one, just like for negation.1

1 backend/optimizer/path/costsize.c, calc_joinrel_size_estimate function

416

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/optimizer/path/costsize.c;hb=REL_14_STABLE

21.2 Nested Loop Joins

Cost estimation. For anti- and semi-joins, the cost estimation reflects the fact that

the scan of the second set stops as soon as the first matching row is found.1

Non-Equi-joins

The nested loop algorithm allows joining sets of rows based on any join condition.

Obviously, if the inner set is a base table with an index created on it, and the join

condition uses an operator that belongs to an operator class p. ���of this index, the ac-

cess to the inner set can be quite efficient. But it is always possible to perform the

join by calculating a Cartesian product of rows filtered by some condition—which

can be absolutely arbitrary in this case. Like in the following query, which selects

pairs of airports that are located close to each other:

=> CREATE EXTENSION earthdistance CASCADE;

=> EXPLAIN (costs off) SELECT *

FROM airports a1

JOIN airports a2 ON a1.airport_code != a2.airport_code

AND a1.coordinates <@> a2.coordinates < 100;

QUERY PLAN

−−−

Nested Loop

Join Filter: ((ml.airport_code <> ml_1.airport_code) AND

((ml.coordinates <@> ml_1.coordinates) < '100'::double precisi...

−> Seq Scan on airports_data ml

−> Materialize

−> Seq Scan on airports_data ml_1

(6 rows)

Parallel Mode v. �.�

A nested loop join can participate in parallel p. ���plan execution.2

It is only the outer set that can be processed in parallel, as it can be scanned by

several workers simultaneously. Having fetched an outer row, each worker then

has to search for the matching rows in the inner set, which is done sequentially.

1 backend/optimizer/path/costsize.c, final_cost_nestloop function
2 backend/optimizer/path/joinpath.c, consider_parallel_nestloop function

417

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/optimizer/path/costsize.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/optimizer/path/joinpath.c;hb=REL_14_STABLE

Chapter 21 Nested Loop

The query shown below includes several joins; it searches for passengers that have

tickets for a particular flight:

=> EXPLAIN (costs off) SELECT t.passenger_name

FROM tickets t

JOIN ticket_flights tf ON tf.ticket_no = t.ticket_no

JOIN flights f ON f.flight_id = tf.flight_id

WHERE f.flight_id = 12345;

QUERY PLAN

−−−

Nested Loop

−> Index Only Scan using flights_flight_id_status_idx on fligh...

Index Cond: (flight_id = 12345)

−> Gather

Workers Planned: 2

−> Nested Loop

−> Parallel Seq Scan on ticket_flights tf

Filter: (flight_id = 12345)

−> Index Scan using tickets_pkey on tickets t

Index Cond: (ticket_no = tf.ticket_no)

(10 rows)

At the upper level, the nested loop join is performed sequentially. The outer set

consists of a single row of the flights table fetched by a unique key, so the use of a

nested loop is justified even for a large number of inner rows.

The inner set is retrieved using a parallel plan. Each of the workers scansp. ��� its own

share of rows of the ticket_flights table and joins themwith tickets using the nested

loop algorithm.

418

22
Hashing

22.1 Hash Joins

One-Pass Hash Joins

A hash join searches for matching rows using a pre-built hash table. Here is an

example of a plan with such a join:

=> EXPLAIN (costs off) SELECT *

FROM tickets t

JOIN ticket_flights tf ON tf.ticket_no = t.ticket_no;

QUERY PLAN

−−−

Hash Join

Hash Cond: (tf.ticket_no = t.ticket_no)

−> Seq Scan on ticket_flights tf

−> Hash

−> Seq Scan on tickets t

(5 rows)

At the first stage, the Hash Join node1 calls the Hash node,2 which pulls the whole

inner set of rows from its child node and places it into a hash table.

Storing pairs of hash keys and values, the hash table enables fast access to a value

by its key; the search time does not depend on the size of the hash table, as hash

keys are distributed more or less uniformly between a limited number of buckets.

The bucket to which a given key goes is determined by the hash function of the hash

key; since the number of buckets is always a power of two, it is enough to take the

required number of bits of the computed value.

1 backend/executor/nodeHashjoin.c
2 backend/executor/nodeHash.c

419

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/executor/nodeHashjoin.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/executor/nodeHash.c;hb=REL_14_STABLE

Chapter 22 Hashing

Just like the bufferp. ��� cache, this implementation uses a dynamically extendible hash

table that resolves hash collisions by chaining.1

At thefirst stage of a join operation, the inner set is scanned, and the hash function

is computed for each of its rows. The columns referenced in the join condition

(Hash Cond) serve as the hash key, while the hash table itself stores all the queried

fields of the inner set.

A hash join is most efficientv. �� if the whole hash table can be accommodated in ���,

as the executor manages to process the data in one batch in this case. The size

of the memory chunk allocated for this purpose is limited by the4MB work_mem ×
1.0 hash_mem_multiplier value.

outer
set

inner
set

work_mem × hash_mem_multiplier

Let’s run ������� ������� to take a look at statistics on memory usage of a query:

=> SET work_mem = '256MB';

=> EXPLAIN (analyze, costs off, timing off, summary off)

SELECT * FROM bookings b

JOIN tickets t ON b.book_ref = t.book_ref;

QUERY PLAN

−−−

Hash Join (actual rows=2949857 loops=1)

Hash Cond: (t.book_ref = b.book_ref)

−> Seq Scan on tickets t (actual rows=2949857 loops=1)

−> Hash (actual rows=2111110 loops=1)

Buckets: 4194304 Batches: 1 Memory Usage: 145986kB

−> Seq Scan on bookings b (actual rows=2111110 loops=1)

(6 rows)

1 backend/utils/hash/dynahash.c

420

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/utils/hash/dynahash.c;hb=REL_14_STABLE

22.1 Hash Joins

Unlike a nested loop join, which treats inner and outer sets differently, a hash join

can swap them around. The smaller set is usually used as the inner one, as it results

in a smaller hash table.

In this example, the whole table fits into the allocated cache: it takes about ��� ��

(Memory Usage) and contains � � = ��� buckets. So the join is performed in one

pass (Batches).

But if the query referred to only one column, the hash table would fit ��� ��:

=> EXPLAIN (analyze, costs off, timing off, summary off)

SELECT b.book_ref

FROM bookings b

JOIN tickets t ON b.book_ref = t.book_ref;

QUERY PLAN

−−−

Hash Join (actual rows=2949857 loops=1)

Hash Cond: (t.book_ref = b.book_ref)

−> Index Only Scan using tickets_book_ref_idx on tickets t

(actual rows=2949857 loops=1)

Heap Fetches: 0

−> Hash (actual rows=2111110 loops=1)

Buckets: 4194304 Batches: 1 Memory Usage: 113172kB

−> Seq Scan on bookings b (actual rows=2111110 loops=1)

(8 rows)

=> RESET work_mem;

It is yet another reason to avoid referring to superfluous fields in a query (which

can happen if you are using an asterisk, to give one example).

The chosen number of buckets should guarantee that each bucket holds only one

row on average when the hash table is completely filled with data. Higher density

would increase the rate of hash collisions, making the search less efficient, while a

less compact hash table would take up too much memory. The estimated number

of buckets is increased up to the nearest power of two.1

(If the estimated hash table size exceeds the memory limit based on the average

width of a single row, two-pass hashing will be applied.)

A hash join cannot start returning results until the hash table is fully built.

1 backend/executor/nodeHash.c, ExecChooseHashTableSize function

421

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/executor/nodeHash.c;hb=REL_14_STABLE

Chapter 22 Hashing

At the second stage (the hash table is already built by this time), the Hash Join

node calls on its second child node to get the outer set of rows. For each scanned

row, the hash table is searched for a match. It requires calculating the hash key for

the columns of the outer set that are included into the join condition.

outer
set

The found matches are returned to the parent node.

Cost estimation. Wehave already covered cardinality estimationp. ��� ; since it does not

depend on the join method, I will now focus on cost estimation.

The cost of the Hash node is represented by the total cost of its child node. It is a

dummy number that simply fills the slot in the plan.1 All the actual estimations

are included into the cost of the Hash Join node.2

Here is an example:

=> EXPLAIN (analyze, timing off, summary off)

SELECT * FROM flights f

JOIN seats s ON s.aircraft_code = f.aircraft_code;

QUERY PLAN

−−−

Hash Join (cost=38.13..278507.28 rows=16518865 width=78)

(actual rows=16518865 loops=1)

Hash Cond: (f.aircraft_code = s.aircraft_code)

−> Seq Scan on flights f (cost=0.00..4772.67 rows=214867 widt...

(actual rows=214867 loops=1)

−> Hash (cost=21.39..21.39 rows=1339 width=15)

(actual rows=1339 loops=1)

Buckets: 2048 Batches: 1 Memory Usage: 79kB

−> Seq Scan on seats s (cost=0.00..21.39 rows=1339 width=15)

(actual rows=1339 loops=1)

(10 rows)

1 backend/optimizer/plan/createplan.c, create_hashjoin_plan function
2 backend/optimizer/path/costsize.c, initial_cost_hashjoin and final_cost_hashjoin functions

422

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/optimizer/plan/createplan.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/optimizer/path/costsize.c;hb=REL_14_STABLE

22.1 Hash Joins

The startup cost of the join reflects primarily the cost of hash table creation and

includes the following components:

• the total cost of fetching the inner set,which is required to build the hash table

• the cost of calculating the hash function of all the columns included into the

join key, for each row of the inner set (estimated at 0.0025cpu_operator_cost per op-

eration)

• the cost of insertion of all the inner rows into the hash table (estimated at

0.01cpu_tuple_cost per inserted row)

• the startup cost of fetching the outer set of rows, which is required to start the

join operation

The total cost comprises the startup cost and the cost of the join itself, namely:

• the cost of computing the hash function of all the columns included into the

join key, for each row of the outer set (cpu_operator_cost)

• the cost of join condition rechecks,which are required to address possible hash

collisions (estimated at cpu_operator_cost per each checked operator)

• the processing cost for each resulting row (cpu_tuple_cost)

The number of required rechecks is the hardest to estimate. It is calculated by

multiplying the number of rows of the outer set by some fraction of the inner set

(stored in the hash table). To estimate this fraction, the planner has to take into

account that data distribution may be non-uniform. I will spare you the details of

these computations;1 in this particular case, this fraction is estimated at �.������.

Thus, the cost of our query is estimated as follows:

=> WITH cost(startup) AS (

SELECT round((

21.39 +

current_setting('cpu_operator_cost')::real * 1339 +

current_setting('cpu_tuple_cost')::real * 1339 +

0.00

)::numeric, 2)

)

1 backend/utils/adt/selfuncs.c, estimate_hash_bucket_stats function

423

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/utils/adt/selfuncs.c;hb=REL_14_STABLE

Chapter 22 Hashing

SELECT startup,

startup + round((

4772.67 +

current_setting('cpu_operator_cost')::real * 214867 +

current_setting('cpu_operator_cost')::real * 214867 * 1339 *

0.150112 +

current_setting('cpu_tuple_cost')::real * 16518865

)::numeric, 2) AS total

FROM cost;

startup | total

−−−−−−−−−+−−−−−−−−−−−

38.13 | 278507.26

(1 row)

And here is the dependency graph:

QUERY PLAN

−−

Hash Join

(cost=38.13..278507.28 rows=16518865 width=78)

Hash Cond: (f.aircraft_code = s.aircraft_code)

−> Seq Scan on flights f

(cost=0.00..4772.67 rows=214867 width=63)

−> Hash

(cost=21.39..21.39 rows=1339 width=15)

−> Seq Scan on seats s

(cost=0.00..21.39 rows=1339 width=15)

(9 rows)

Two-Pass Hash Joins

If the planner’s estimations show that the hash table will not fit the allocatedmem-

ory, the inner set of rows is split into batches to be processed separately. The num-

ber of batches (just like the number of buckets) is always a power of two; the batch

to use is determined by the corresponding number of bits of the hash key.1

Any two matching rows belong to one and the same batch: rows placed into differ-

ent batches cannot have the same hash code.

1 backend/executor/nodeHash.c, ExecHashGetBucketAndBatch function

424

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/executor/nodeHash.c;hb=REL_14_STABLE

22.1 Hash Joins

All batches hold an equal number of hash keys. If the data is distributed uniformly,

batch sizes will also be roughly the same. The planner can control memory con-

sumption by choosing an appropriate number of batches.1

At the first stage, the executor scans the inner set of rows to build the hash table.

If the scanned row belongs to the first batch, it is added to the hash table and kept

in ���. Otherwise, it is written into a temporary file (there is a separate file for each

batch).2

The total volume of temporary files that a session can store on disk is limited by the

−1temp_file_limit parameter (temporary tables are not included into this limit). As soon as

the session reaches this value, the query is aborted.

outer
set

inner
set

At the second stage, the outer set is scanned. If the row belongs to the first batch,

it is matched against the hash table, which contains the first batch of rows of the

inner set (there can be no matches in other batches anyway).

If the row belongs to a different batch, it is stored in a temporary file,which is again

created separately for each batch. Thus,N batches can use 2(N − 1) files (or fewer
if some of the batches turn out to be empty).

Once the second stage is complete, thememory allocated for the hash table is freed.

At this point, we already have the result of the join for one of the batches.

1 backend/executor/nodeHash.c, ExecChooseHashTableSize function
2 backend/executor/nodeHash.c, ExecHashTableInsert function

425

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/executor/nodeHash.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/executor/nodeHash.c;hb=REL_14_STABLE

Chapter 22 Hashing

outer
set

inner
set

Both stages are repeated for each of the batches saved on disk: the rows of the

inner set are transferred from the temporary file to the hash table; then the rows

of the outer set related to the same batch are read from another temporary file and

matched against this hash table. Once processed, temporary files get deleted.

outer
set

Unlike a similar output for a one-pass join, the output of the ������� command for

a two-pass join contains more than one batch. If run with the ������� option, this

command also displays statistics on disk access:

=> EXPLAIN (analyze, buffers, costs off, timing off, summary off)

SELECT *

FROM bookings b

JOIN tickets t ON b.book_ref = t.book_ref;

426

22.1 Hash Joins

QUERY PLAN

−−−

Hash Join (actual rows=2949857 loops=1)

Hash Cond: (t.book_ref = b.book_ref)

Buffers: shared hit=7236 read=55626, temp read=55126

written=55126

−> Seq Scan on tickets t (actual rows=2949857 loops=1)

Buffers: shared read=49415

−> Hash (actual rows=2111110 loops=1)

Buckets: 65536 Batches: 64 Memory Usage: 2277kB

Buffers: shared hit=7236 read=6211, temp written=10858

−> Seq Scan on bookings b (actual rows=2111110 loops=1)

Buffers: shared hit=7236 read=6211

(11 rows)

I have already shown this query above with an increased work_mem setting. The

default value of � �� is too small for the whole hash table to fit ���; in this exam-

ple, the data is split into �� batches, and the hash table uses �� � = ��� buckets.

As the hash table is being built (the Hash node), the data is written into temporary

files (temp written); at the join stage (the Hash Join node), temporary files are both

read and written (temp read, written).

To collect more statistics on temporary files, you can set the −1log_temp_files param-

eter to zero. Then the server log will list all the temporary files and their sizes (as

they appeared at the time of deletion).

Dynamic Adjustments

The planned course of events may be disrupted by two issues: inaccurate statistics

and non-uniform data distribution.

If the distribution of values in the join key columns is non-uniform, different

batches will have different sizes.

If some batch (except for the very first one) turns out to be too large, all its rows

will have to be written to disk and then read from disk. It is the outer set that

causes most of the trouble, as it is typically bigger. So if there are regular, non-

multivariate p. ���statistics on ���s of the outer set (that is, the outer set is represented

427

Chapter 22 Hashing

by a table, and the join is performed by a single column), rows with hash codes cor-

responding to ���s are considered to be a part of the first batch.1 This technique

(called skew optimization) can reduce the �/� overhead of a two-pass join to some

extent.

Because of these two factors, the size of some (or all) batches may exceed the esti-

mation. Then the corresponding hash tablewill not fit the allocatedmemory chunk

and will surpass the defined limits.

So if the hash table being built turns out too big, the number of batches is increased

(doubled) on the fly. Each batch is virtually split into two new ones: about half of

the rows (assuming that the distribution is uniform) is left in the hash table, while

the other half is saved into a new temporary file.2

Such a split can happen even if a one-pass join has been originally planned. In

fact, one- and two-pass joins use one and the same algorithm implemented by the

same code; I single them out here solely for smoother narration.

The number of batches cannot be reduced. If it turns out that the planner has

overestimated the data size, batches will not be merged together.

In the case of non-uniform distribution, increasing the number of batches may not

help. For example, if the key column contains one and the same value in all its rows,

they will be placed into the same batch since the hash function will be returning

the same value over and over again. Unfortunately, the hash table will continue

growing in this case, regardless of the imposed restrictions.

In theory, this issue could be addressed by a multi-pass join, which would perform partial

scans of the batch, but it is not supported.

To demonstrate a dynamic increase in the number of batches, we first have to per-

form some manipulationsp. ��� :

=> CREATE TABLE bookings_copy (LIKE bookings INCLUDING INDEXES)

WITH (autovacuum_enabled = off);

=> INSERT INTO bookings_copy SELECT * FROM bookings;

INSERT 0 2111110

1 backend/executor/nodeHash.c, ExecHashBuildSkewHash function
2 backend/executor/nodeHash.c, ExecHashIncreaseNumBatches function

428

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/executor/nodeHash.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/executor/nodeHash.c;hb=REL_14_STABLE

22.1 Hash Joins

=> DELETE FROM bookings_copy WHERE random() < 0.9;

DELETE 1899232

=> ANALYZE bookings_copy;

=> INSERT INTO bookings_copy SELECT * FROM bookings

ON CONFLICT DO NOTHING;

INSERT 0 1899232

=> SELECT reltuples FROM pg_class WHERE relname = 'bookings_copy';

reltuples

−−−−−−−−−−−

211878

(1 row)

As a result, we get a new table called bookings_copy. It is an exact copy of the

bookings table, but the planner underestimates the number of rows in it by ten

times. A similar situation may occur if the hash table is generated for a set of rows

produced by another join operation, so there is no reliable statistics available.

This miscalculation makes the planner think that � buckets are enough, but while

the join is being performed, this number grows to ��:

=> EXPLAIN (analyze, costs off, timing off, summary off)

SELECT *

FROM bookings_copy b

JOIN tickets t ON b.book_ref = t.book_ref;

QUERY PLAN

−−−

Hash Join (actual rows=2949857 loops=1)

Hash Cond: (t.book_ref = b.book_ref)

−> Seq Scan on tickets t (actual rows=2949857 loops=1)

−> Hash (actual rows=2111110 loops=1)

Buckets: 65536 (originally 65536) Batches: 32 (originally 8)

Memory Usage: 4040kB

−> Seq Scan on bookings_copy b (actual rows=2111110 loops=1)

(7 rows)

Cost estimation. I have already used this example to demonstrate cost estimation

for a one-pass join, but now I am going to reduce the size of available memory to

the minimum, so the planner will have to use two batches. It increases the cost of

the join:

429

Chapter 22 Hashing

=> SET work_mem = '64kB';

=> EXPLAIN (analyze, timing off, summary off)

SELECT * FROM flights f

JOIN seats s ON s.aircraft_code = f.aircraft_code;

QUERY PLAN

−−−

Hash Join (cost=45.13..283139.28 rows=16518865 width=78)

(actual rows=16518865 loops=1)

Hash Cond: (f.aircraft_code = s.aircraft_code)

−> Seq Scan on flights f (cost=0.00..4772.67 rows=214867 widt...

(actual rows=214867 loops=1)

−> Hash (cost=21.39..21.39 rows=1339 width=15)

(actual rows=1339 loops=1)

Buckets: 2048 Batches: 2 Memory Usage: 55kB

−> Seq Scan on seats s (cost=0.00..21.39 rows=1339 width=15)

(actual rows=1339 loops=1)

(10 rows)

=> RESET work_mem;

The cost of the second pass is incurred by spilling rows into temporary files and

reading them from these files.

The startup cost of a two-pass join is based on that of a one-pass join, which is

increased by the estimated cost of writing as many pages as required to store all

the necessary fields of all the rows of the inner set.1 Although the first batch is not

written to disk when the hash table is being built, the estimation does not take it

into account and hence does not depend on the number of batches.

In its turn, the total cost comprises the total cost of a one-pass join and the esti-

mated costs of reading the rows of the inner set previously stored on disk, as well

as reading and writing the rows of the outer set.

Both writing and reading are estimated at seq_page_cost per page, as �/� operations

are assumed to be sequential.

In this particular case, the number of pages required for the inner set is estimated at

�, while the data of the outer set is expected to fit ���� pages. Having added these

estimations to the one-pass join cost calculated above, we get the same figures as

shown in the query plan:

1 backend/optimizer/path/costsize.c, page_size function

430

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/optimizer/path/costsize.c;hb=REL_14_STABLE

22.1 Hash Joins

=> SELECT 38.13 + -- startup cost of a one-pass join

current_setting('seq_page_cost')::real * 7

AS startup,

278507.28 + -- total cost of a one-pass join

current_setting('seq_page_cost')::real * 2 * (7 + 2309)

AS total;

startup | total

−−−−−−−−−+−−−−−−−−−−−

45.13 | 283139.28

(1 row)

Thus, if there is not enough memory, the join is performed in two passes and be-

comes less efficient. Therefore, it is important to observe the following points:

• The query must be composed in a way that excludes redundant fields from the

hash table.

• The planner must choose the smaller of the two sets of rows when building

the hash table.

Using Hash Joins in Parallel Plans v. �.�

The hash join algorithm described above can also be used in parallel plans. First,

several parallel processes build their own (absolutely identical) hash tables for the

inner set, independently of each other; then they start processing the outer set

concurrently. The performance gain here is due to each process scanning only its

own share of outer rows.

The following plan uses a regular one-pass hash join:

=> SET work_mem = '128MB';

=> SET enable_parallel_hash = off;

=> EXPLAIN (analyze, costs off, timing off, summary off)

SELECT count(*)

FROM bookings b

JOIN tickets t ON t.book_ref = b.book_ref;

431

Chapter 22 Hashing

QUERY PLAN

−−−

Finalize Aggregate (actual rows=1 loops=1)

−> Gather (actual rows=3 loops=1)

Workers Planned: 2

Workers Launched: 2

−> Partial Aggregate (actual rows=1 loops=3)

−> Hash Join (actual rows=983286 loops=3)

Hash Cond: (t.book_ref = b.book_ref)

−> Parallel Index Only Scan using tickets_book_ref...

Heap Fetches: 0

−> Hash (actual rows=2111110 loops=3)

Buckets: 4194304 Batches: 1 Memory Usage:

113172kB

−> Seq Scan on bookings b (actual rows=2111110...

(13 rows)

=> RESET enable_parallel_hash;

Here each process hashes the bookings table, then retrieves its own share of outer

rows via the Parallel Index Only Scan node, and matches these rows against the

resulting hash table.

The hash table memory limit is applied to each parallel process separately, so the

total size of memory allocated for this purpose will be three times bigger than in-

dicated in the plan (Memory Usage).

Parallel One-Pass Hash Joinsv. ��

Even though a regular hash join can be quite efficient in parallel plans (especially

for small inner sets, for which parallel processing does not make much sense),

larger data sets are better handled by a special parallel hash join algorithm.

An important distinction of the parallel version of the algorithm is that the hash

table is created in the shared memory, which is allocated dynamically and can be

accessed by all parallel processes that contribute to the join operation. Instead of

several separate hash tables, a single common one is built, which uses the total

amount of memory dedicated to all the participating processes. It increases the

chance of completing the join in one pass.

432

22.1 Hash Joins

At thefirst stage (represented in the plan by the Parallel Hashnode), all the parallel

processes build a commonhash table, taking advantage of the parallel access to the

inner set.1

outer
set

inner
set

work_mem × hash_mem_multiplier × number of processes

To move on from here, each parallel process must complete its share of first-stage

processing.2

At the second stage (the Parallel Hash Join node), the processes are again run in

parallel to match their shares of rows of the outer set against the hash table, which

is already built by this time.3

outer
set

Here is an example of such a plan:

=> SET work_mem = '64MB';

=> EXPLAIN (analyze, costs off, timing off, summary off)

SELECT count(*)

FROM bookings b

JOIN tickets t ON t.book_ref = b.book_ref;

1 backend/executor/nodeHash.c, MultiExecParallelHash function
2 backend/storage/ipc/barrier.c
3 backend/executor/nodeHashjoin.c, ExecParallelHashJoin function

433

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/executor/nodeHash.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/storage/ipc/barrier.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/executor/nodeHashjoin.c;hb=REL_14_STABLE

Chapter 22 Hashing

QUERY PLAN

−−−

Finalize Aggregate (actual rows=1 loops=1)

−> Gather (actual rows=3 loops=1)

Workers Planned: 2

Workers Launched: 2

−> Partial Aggregate (actual rows=1 loops=3)

−> Parallel Hash Join (actual rows=983286 loops=3)

Hash Cond: (t.book_ref = b.book_ref)

−> Parallel Index Only Scan using tickets_book_ref...

Heap Fetches: 0

−> Parallel Hash (actual rows=703703 loops=3)

Buckets: 4194304 Batches: 1 Memory Usage:

115392kB

−> Parallel Seq Scan on bookings b (actual row...

(13 rows)

=> RESET work_mem;

It is the same query that I showed in the previous section, but the parallel hash join

was turned off by theon enable_parallel_hash parameter at that time.

Although the available memory is down by half as compared to a regular hash join

demonstrated before, the operation still completes in one pass because it uses the

memory allocated for all the parallel processes (Memory Usage). The hash table

gets a bit bigger, but since it is the only one we have now, the total memory usage

has decreased.

Parallel Two-Pass Hash Joinsv. ��

The consolidated memory of all the parallel processes may still be not enough to

accommodate the whole hash table. It can become clear either at the planning

stage or later, during query execution. The two-pass algorithm applied in this case

is quite different from what we have seen so far.

The key distinction of this algorithm is that it creates several smaller hash ta-

bles instead of a single big one. Each process gets its own table and processes

its own batches independently. (But since separate hash tables are still located in

the shared memory, any process can get access to any of these tables.) If planning

434

22.1 Hash Joins

shows that more than one batch will be required,1 a separate hash table is built for

each process right away. If the decision is taken at the execution stage, the hash

table is rebuilt.2

Thus, at the first stage processes scan the inner set in parallel, splitting it into

batches and writing them into temporary files.3 Since each process reads only its

own share of the inner set, none of them builds a full hash table for any of the

batches (even for thefirst one). The full set of rows of any batch is only accumulated

in the filewritten by all the parallel processes in a synchronizedmanner.4 So unlike

the non-parallel and one-pass parallel versions of the algorithm, the parallel two-

pass hash join writes all the batches to disk, including the first one.

outer
set

inner
set

Once all the processes have completed hashing of the inner set, the second stage

begins.5

If the non-parallel version of the algorithm were employed, the rows of the outer

set that belong to the first batch would be matched against the hash table right

away. But in the case of the parallel version, the memory does not contain the

hash table yet, so the workers process the batches independently. Therefore, the

second stage starts by a parallel scan of the outer set to distribute its rows into

batches, and each batch is written into a separate temporary file.6 The scanned

1 backend/executor/nodeHash.c, ExecChooseHashTableSize function
2 backend/executor/nodeHash.c, ExecParallelHashIncreaseNumBatches function
3 backend/executor/nodeHash.c, MultiExecParallelHash function
4 backend/utils/sort/sharedtuplestore.c
5 backend/executor/nodeHashjoin.c, ExecParallelHashJoin function
6 backend/executor/nodeHashjoin.c, ExecParallelHashJoinPartitionOuter function

435

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/executor/nodeHash.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/executor/nodeHash.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/executor/nodeHash.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/utils/sort/sharedtuplestore.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/executor/nodeHashjoin.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/executor/nodeHashjoin.c;hb=REL_14_STABLE

Chapter 22 Hashing

rows are not inserted into the hash table (as it happens at the first stage), so the

number of batches never rises.

Once all the processes have completed the scan of the outer set, we get 2N tempo-

rary files on disk; they contain the batches of the inner and outer sets.

outer
set

inner
set

Then each process chooses one of the batches and performs the join: it loads the

inner set of rows into a hash table in memory, scans the rows of the outer set, and

matches them against the hash table. When the batch join is complete, the process

chooses the next batch that has not been processed yet.1

outer
set

inner
set

If no more unprocessed batches are left, the process that has completed its own

batch starts processing one of the batches that is currently being handled by an-

other process; such concurrent processing is possible because all the hash tables

are located in the shared memory.

1 backend/executor/nodeHashjoin.c, ExecParallelHashJoinNewBatch function

436

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/executor/nodeHashjoin.c;hb=REL_14_STABLE

22.1 Hash Joins

outer
set

This approach is more efficient than using a single big hash table for all the pro-

cesses: it is easier to set up parallel processing, and synchronization is cheaper.

Modifications

The hash join algorithm supports any types of joins: apart from the inner join, it

can also handle left, right, and full outer joins, as well as semi- and anti-joins. But

as I have already mentioned, the join condition is limited to the equality operator.

We have already observed some of these operations p. ���when dealing with the nested

loop join. Here is an example of the right outer join:

=> EXPLAIN (costs off) SELECT *

FROM bookings b

LEFT OUTER JOIN tickets t ON t.book_ref = b.book_ref;

QUERY PLAN

−−

Hash Right Join

Hash Cond: (t.book_ref = b.book_ref)

−> Seq Scan on tickets t

−> Hash

−> Seq Scan on bookings b

(5 rows)

Note that the logical left join specified in the ��� query got transformed into a

physical operation of the right join in the execution plan.

At the logical level, bookings is the outer table (constituting the left side of the join

operation), while the tickets table is the inner one. Therefore, bookings with no

tickets must also be included into the join result.

437

Chapter 22 Hashing

At the physical level, inner and outer sets are assigned based on the cost of the

join rather than their location in the query text. It usually means that the set with

a smaller hash table will be used as the inner one. This is exactly what is happening

here: the bookings table is used as the inner set, and the left join is changed to the

right one.

And vice versa, if the query specifies the right outer join (to display the tickets that

are not related to any bookings), the execution plan uses the left join:

=> EXPLAIN (costs off) SELECT *

FROM bookings b

RIGHT OUTER JOIN tickets t ON t.book_ref = b.book_ref;

QUERY PLAN

−−

Hash Left Join

Hash Cond: (t.book_ref = b.book_ref)

−> Seq Scan on tickets t

−> Hash

−> Seq Scan on bookings b

(5 rows)

To complete the picture, I will provide an example of a query plan with the full

outer join:

=> EXPLAIN (costs off) SELECT *

FROM bookings b

FULL OUTER JOIN tickets t ON t.book_ref = b.book_ref;

QUERY PLAN

−−

Hash Full Join

Hash Cond: (t.book_ref = b.book_ref)

−> Seq Scan on tickets t

−> Hash

−> Seq Scan on bookings b

(5 rows)

Parallel hash joins are currently not supported for right and full joins.1

Note that the next example uses the bookings table as the outer set, but the planner

would have preferred the right join if it were supported:

1 commitfest.postgresql.org/33/2903

438

https://commitfest.postgresql.org/33/2903

22.2 Distinct Values and Grouping

=> EXPLAIN (costs off) SELECT sum(b.total_amount)

FROM bookings b

LEFT OUTER JOIN tickets t ON t.book_ref = b.book_ref;

QUERY PLAN

−−−

Finalize Aggregate

−> Gather

Workers Planned: 2

−> Partial Aggregate

−> Parallel Hash Left Join

Hash Cond: (b.book_ref = t.book_ref)

−> Parallel Seq Scan on bookings b

−> Parallel Hash

−> Parallel Index Only Scan using tickets_book...

(9 rows)

22.2 Distinct Values and Grouping

Algorithms that group values for aggregation and remove duplicates are very sim-

ilar to join algorithms. One of the approaches they can use consists in building a

hash table on the required columns. Values are included into the hash table only

if it contains no such values yet. As a result, the hash table accumulates all the

distinct values.

The node that performs hash aggregation is called HashAggregate.1

Let’s consider some situations that may require this node.

The number of seats in each travel class (����� ��):

=> EXPLAIN (costs off) SELECT fare_conditions, count(*)

FROM seats

GROUP BY fare_conditions;

QUERY PLAN

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

HashAggregate

Group Key: fare_conditions

−> Seq Scan on seats

(3 rows)

1 backend/executor/nodeAgg.c

439

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/executor/nodeAgg.c;hb=REL_14_STABLE

Chapter 22 Hashing

The list of travel classes (��������):

=> EXPLAIN (costs off) SELECT DISTINCT fare_conditions

FROM seats;

QUERY PLAN

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

HashAggregate

Group Key: fare_conditions

−> Seq Scan on seats

(3 rows)

Travel classes combined with one more value (�����):

=> EXPLAIN (costs off) SELECT fare_conditions

FROM seats

UNION

SELECT NULL;

QUERY PLAN

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

HashAggregate

Group Key: seats.fare_conditions

−> Append

−> Seq Scan on seats

−> Result

(5 rows)

The Append node combines both sets but does not get rid of any duplicates, which

must not appear in the ����� result. They have to be removed separately by the

HashAggregate node.

The memory chunk allocated for the hash table is limited by the4MB work_mem ×
1.0 hash_mem_multiplier value, just like in the case of a hash join.

If the hash table fits the allocated memory, aggregation uses a single batch:

=> EXPLAIN (analyze, costs off, timing off, summary off)

SELECT DISTINCT amount FROM ticket_flights;

QUERY PLAN

−−−

HashAggregate (actual rows=338 loops=1)

Group Key: amount

Batches: 1 Memory Usage: 61kB

−> Seq Scan on ticket_flights (actual rows=8391852 loops=1)

(4 rows)

440

22.2 Distinct Values and Grouping

There are not so many distinct values in the amounts field, so the hash table takes

only �� k� (Memory Usage).

As soon as v. ��the hash table fills up the allocated memory, all the further values are

spilled into temporary files and grouped into partitions based on several bits of

their hash values. The number of partitions is a power of two and is chosen in such

a way that each of their hash tables fits the allocated memory. The accuracy of the

estimation is of course dependent on the quality of the collected statistics, so the

received number is multiplied by �.� to further reduce partition sizes and raise the

chances of processing each partition in one pass.1

Once the whole set is scanned, the node returns aggregation results for those val-

ues that have made it into the hash table.

Then the hash table is cleared, and each of the partitions saved into temporary files

at the previous stage is scanned and processed just like any other set of rows. If the

hash table still exceeds the allocatedmemory, the rows that are subject to overflow

will be partitioned again and written to disk for further processing.

To avoid excessive �/�, the two-pass hash join algorithm moves ���s into the first

batch. Aggregation, however, does not require this optimization: those rows that

fit the allocated memory will not be split into partitions, and ���s are likely to

occur early enough to get into ���.

=> EXPLAIN (analyze, costs off, timing off, summary off)

SELECT DISTINCT flight_id FROM ticket_flights;

QUERY PLAN

−−−

HashAggregate (actual rows=150588 loops=1)

Group Key: flight_id

Batches: 5 Memory Usage: 4145kB Disk Usage: 98184kB

−> Seq Scan on ticket_flights (actual rows=8391852 loops=1)

(4 rows)

In this example, the number of distinct ��s is relatively high, so the hash table does

not fit the allocated memory. It takes five batches to perform the query: one for

the initial data set and four for the partitions written to disk.

1 backend/executor/nodeAgg.c, hash_choose_num_partitions function

441

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/executor/nodeAgg.c;hb=REL_14_STABLE

23
Sorting and Merging

23.1 Merge Joins

A merge join processes data sets sorted by the join key and returns the result that

is sorted in a similar way. Input sets may come pre-sorted following an index scan;

otherwise, the executor has to sort them before the actual merge begins.1

Merging Sorted Sets

Let’s take a look at an example of a merge join; it is represented in the execution

plan by the Merge Join node:2

=> EXPLAIN (costs off) SELECT *

FROM tickets t

JOIN ticket_flights tf ON tf.ticket_no = t.ticket_no

ORDER BY t.ticket_no;

QUERY PLAN

−−

Merge Join

Merge Cond: (t.ticket_no = tf.ticket_no)

−> Index Scan using tickets_pkey on tickets t

−> Index Scan using ticket_flights_pkey on ticket_flights tf

(4 rows)

The optimizer prefers this joinmethod because it returns a sorted result, as defined

by the ����� �� clause. When choosing a plan, the optimizer notes the sort order

of the data sets and does not perform any sorting unless it is really required. For

1 backend/optimizer/path/joinpath.c, generate_mergejoin_paths function
2 backend/executor/nodeMergejoin.c

442

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/optimizer/path/joinpath.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/executor/nodeMergejoin.c;hb=REL_14_STABLE

23.1 Merge Joins

example, if the data set produced by a merge join already has an appropriate sort

order, it can be used in the subsequent merge join as is:

=> EXPLAIN (costs off) SELECT *

FROM tickets t

JOIN ticket_flights tf ON t.ticket_no = tf.ticket_no

JOIN boarding_passes bp ON bp.ticket_no = tf.ticket_no

AND bp.flight_id = tf.flight_id

ORDER BY t.ticket_no;

QUERY PLAN

−−−

Merge Join

Merge Cond: (tf.ticket_no = t.ticket_no)

−> Merge Join

Merge Cond: ((tf.ticket_no = bp.ticket_no) AND (tf.flight_...

−> Index Scan using ticket_flights_pkey on ticket_flights tf

−> Index Scan using boarding_passes_pkey on boarding_passe...

−> Index Scan using tickets_pkey on tickets t

(7 rows)

The first tables to be joined are ticket_flights and boarding_passes; both of them

have a composite primary key (ticket_no, flight_id), and the result is sorted by these

two columns. The produced set of rows is then joined with the tickets table, which

is sorted by the ticket_no column.

The join requires only one pass over both data sets and does not take any additional

memory. It uses two pointers to the current rows (which are originally the first

ones) of the inner and outer sets.

If the keys of the current rows do not match, one of the pointers (that references

the row with the smaller key) is going to be advanced to the next row until it finds

a match. The joined rows are returned to the upper node, and the pointer of the

inner set is advanced by one place. The operation continues until one of the sets

is over.

This algorithm copes with duplicates of the inner set, but the outer set can contain

them too. Therefore, the algorithm has to be improved: if the key remains the

same after the outer pointer is advanced, the inner pointer gets back to the first

matching row. Thus, each row of the outer set will be matched to all the rows of

the inner set with the same key.1

1 backend/executor/nodeMergejoin.c, ExecMergeJoin function

443

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/executor/nodeMergejoin.c;hb=REL_14_STABLE

Chapter 23 Sorting and Merging

For the outer join, the algorithm is further tweaked a bit, but it is still based on the

same principle.

Merge join conditions can use only the equality operator, which means that only

equi-joins are supported (although support for other condition types is currently

under way too).1

Cost estimation. Let’s take a closer look at the previous example:

=> EXPLAIN SELECT *

FROM tickets t

JOIN ticket_flights tf ON tf.ticket_no = t.ticket_no

ORDER BY t.ticket_no;

QUERY PLAN

−−

Merge Join (cost=0.99..822355.54 rows=8391852 width=136)

Merge Cond: (t.ticket_no = tf.ticket_no)

−> Index Scan using tickets_pkey on tickets t

(cost=0.43..139110.29 rows=2949857 width=104)

−> Index Scan using ticket_flights_pkey on ticket_flights tf

(cost=0.56..570972.46 rows=8391852 width=32)

(6 rows)

The startup cost of the join includes at least the startup costs of all the child nodes.

In general, it may be required to scan some fraction of the outer or inner set before

the firstmatch is found. It is possible to estimate this fraction by comparing (based

on the histogramp. ���) the smallest join keys in the two sets.2 But in this particular case,

the range of ticket numbers is the same in both tables.

The total cost comprises the cost of fetching the data from the child nodes and the

computation cost.

Since the join algorithm stops as soon as one of the sets is over (unless the outer

join is performed, of course), the other set may be scanned only partially. To esti-

mate the size of the scanned part, we can compare the maximal key values in the

two sets. In this example, both sets will be read in full, so the total cost of the join

includes the sum of the total costs of both child nodes.

1 For example, see commitfest.postgresql.org/33/3160
2 backend/utils/adt/selfuncs.c, mergejoinscansel function

444

https://commitfest.postgresql.org/33/3160
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/utils/adt/selfuncs.c;hb=REL_14_STABLE

23.1 Merge Joins

Moreover, if there are any duplicates, some of the rows of the inner set may be

scanned several times. The estimated number of repeat scans equals the difference

between the cardinalities of the join result and the inner set.1 In this query, these

cardinalities are the same, which means that the sets contain no duplicates.

The algorithm compares join keys of the two sets. The cost of one comparison is

estimated at the 0.0025cpu_operator_cost value, while the estimated number of compar-

isons can be taken as the sum of rows of both sets (increased by the number of

repeat reads caused by duplicates). The processing cost of each row included into

the result is estimated at the 0.01cpu_tuple_cost value, as usual.

Thus, in this example the cost of the join is estimated as follows:2

=> SELECT 0.43 + 0.56 AS startup,

round((

139110.29 + 570972.46 +

current_setting('cpu_tuple_cost')::real * 8391852 +

current_setting('cpu_operator_cost')::real * (2949857 + 8391852)

)::numeric, 2) AS total;

startup | total

−−−−−−−−−+−−−−−−−−−−−

0.99 | 822355.54

(1 row)

Parallel Mode v. �.�

Although themerge join has no parallel flavor, it can still be used in parallel plans.3

The outer set can be scanned by several workers in parallel, but the inner set is

always scanned by each worker in full.

Since the parallel hash join p. ���is almost always cheaper, I will turn it off for a while:

=> SET enable_hashjoin = off;

Here is an example of a parallel plan that uses a merge join:

1 backend/optimizer/path/costsize.c, final_cost_mergejoin function
2 backend/optimizer/path/costsize.c, initial_cost_mergejoin & final_cost_mergejoin functions
3 backend/optimizer/path/joinpath.c, consider_parallel_mergejoin function

445

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/optimizer/path/costsize.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/optimizer/path/costsize.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/optimizer/path/joinpath.c;hb=REL_14_STABLE

Chapter 23 Sorting and Merging

=> EXPLAIN (costs off)

SELECT count(*), sum(tf.amount)

FROM tickets t

JOIN ticket_flights tf ON tf.ticket_no = t.ticket_no;

QUERY PLAN

−−−

Finalize Aggregate

−> Gather

Workers Planned: 2

−> Partial Aggregate

−> Merge Join

Merge Cond: (tf.ticket_no = t.ticket_no)

−> Parallel Index Scan using ticket_flights_pkey o...

−> Index Only Scan using tickets_pkey on tickets t

(8 rows)

Full and right outer merge joins are not allowed in parallel plans.

Modifications

The merge join algorithm can be used with any types of joins. The only restriction

is that join conditions of full and right outer joins must contain merge-compatible

expressions (“outer-column equals inner-column” or “column equals constant”).1 In-

ner and left outer joins simply filter the join result by irrelevant conditions, but for

full and right joins such filtering is inapplicable.

Here is an example of a full join that uses the merge algorithm:

=> EXPLAIN (costs off) SELECT *

FROM tickets t

FULL JOIN ticket_flights tf ON tf.ticket_no = t.ticket_no

ORDER BY t.ticket_no;

QUERY PLAN

−−

Sort

Sort Key: t.ticket_no

−> Merge Full Join

Merge Cond: (t.ticket_no = tf.ticket_no)

−> Index Scan using tickets_pkey on tickets t

−> Index Scan using ticket_flights_pkey on ticket_flights tf

(6 rows)

1 backend/optimizer/path/joinpath.c, select_mergejoin_clauses function

446

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/optimizer/path/joinpath.c;hb=REL_14_STABLE

23.2 Sorting

Inner and left merge joins preserve the sort order. Full and right outer joins, how-

ever, cannot guarantee it because ���� values can be wedged in between the or-

dered values of the outer set, which breaks the sort order.1 To restore the required

order, the planner introduces the Sort node here. Naturally, it increases the cost

of the plan, making the hash join more attractive, so the planner has selected this

plan only because hash joins are currently disabled.

But the next example cannot do without a hash join: the nested loop does not

allow full joins at all, while merging cannot be used because of an unsupported

join condition. So the hash join is used regardless of the enable_hashjoin parameter

value:

=> EXPLAIN (costs off) SELECT *

FROM tickets t

FULL JOIN ticket_flights tf ON tf.ticket_no = t.ticket_no

AND tf.amount > 0

ORDER BY t.ticket_no;

QUERY PLAN

−−−

Sort

Sort Key: t.ticket_no

−> Hash Full Join

Hash Cond: (tf.ticket_no = t.ticket_no)

Join Filter: (tf.amount > '0'::numeric)

−> Seq Scan on ticket_flights tf

−> Hash

−> Seq Scan on tickets t

(8 rows)

Let’s restore the ability to use hash joins that we have previously disabled:

=> RESET enable_hashjoin;

23.2 Sorting

If one of the sets (or possibly both of them) is not sorted by the join key, it must be

reordered before the join operation begins. This sorting operation is represented

in the plan by the Sort node:2

1 backend/optimizer/path/pathkeys.c, build_join_pathkeys function
2 backend/executor/nodeSort.c

447

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/optimizer/path/pathkeys.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/executor/nodeSort.c;hb=REL_14_STABLE

Chapter 23 Sorting and Merging

=> EXPLAIN (costs off)

SELECT * FROM flights f

JOIN airports_data dep ON f.departure_airport = dep.airport_code

ORDER BY dep.airport_code;

QUERY PLAN

−−

Merge Join

Merge Cond: (f.departure_airport = dep.airport_code)

−> Sort

Sort Key: f.departure_airport

−> Seq Scan on flights f

−> Sort

Sort Key: dep.airport_code

−> Seq Scan on airports_data dep

(8 rows)

Such sorting can also be applied outside the context of joins if the ����� �� clause

is specified, both in a regular query and within a window function:

=> EXPLAIN (costs off)

SELECT flight_id,

row_number() OVER (PARTITION BY flight_no ORDER BY flight_id)

FROM flights f;

QUERY PLAN

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

WindowAgg

−> Sort

Sort Key: flight_no, flight_id

−> Seq Scan on flights f

(4 rows)

Here the WindowAgg node1 computes a window function on the data set that has

been pre-sorted by the Sort node.

The planner has several sort methods in its toolbox. The example that I have al-

ready shown uses two of them (Sort Method). These details can be displayed by the

������� ������� command, as usual:

=> EXPLAIN (analyze,costs off,timing off,summary off)

SELECT * FROM flights f

JOIN airports_data dep ON f.departure_airport = dep.airport_code

ORDER BY dep.airport_code;

1 backend/executor/nodeWindowAgg.c

448

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/executor/nodeWindowAgg.c;hb=REL_14_STABLE

23.2 Sorting

QUERY PLAN

−−

Merge Join (actual rows=214867 loops=1)

Merge Cond: (f.departure_airport = dep.airport_code)

−> Sort (actual rows=214867 loops=1)

Sort Key: f.departure_airport

Sort Method: external merge Disk: 17136kB

−> Seq Scan on flights f (actual rows=214867 loops=1)

−> Sort (actual rows=104 loops=1)

Sort Key: dep.airport_code

Sort Method: quicksort Memory: 52kB

−> Seq Scan on airports_data dep (actual rows=104 loops=1)

(10 rows)

Quicksort

If the data set to be sorted fits the 4MBwork_mem chunk, the classic quicksortmethod is

applied. This algorithm is described in all textbooks, so I am not going to explain

it here.

As for the implementation, sorting is performed by a dedicated component1 that

chooses the most suitable algorithm depending on the amount of available mem-

ory and some other factors.

Cost estimation. Let’s take a look at how a small table is sorted. In this case, sort-

ing is performed in memory using the quicksort algorithm:

=> EXPLAIN SELECT *

FROM airports_data

ORDER BY airport_code;

QUERY PLAN

−−−

Sort (cost=7.52..7.78 rows=104 width=145)

Sort Key: airport_code

−> Seq Scan on airports_data (cost=0.00..4.04 rows=104 width=...

(3 rows)

1 backend/utils/sort/tuplesort.c

449

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/utils/sort/tuplesort.c;hb=REL_14_STABLE

Chapter 23 Sorting and Merging

The computational complexity of sorting n values is known to be O(n log2 n). A

single comparison operation is estimated at the doubled0.0025 cpu_operator_cost value.

Since the whole data set must be scanned and sorted before the result can be re-

trieved, the startup cost of sorting includes the total cost of the child node and all

the expenses incurred by comparison operations.

The total cost of sorting also includes the cost of processing each row to be re-

turned,which is estimated at cpu_operator_cost (and not at the usual cpu_tuple_cost

value, as the overhead incurred by the Sort node is insignificant).1

For this example, the costs are calculated as follows:

=> WITH costs(startup) AS (

SELECT 4.04 + round((

current_setting('cpu_operator_cost')::real * 2 *

104 * log(2, 104)

)::numeric, 2)

)

SELECT startup,

startup + round((

current_setting('cpu_operator_cost')::real * 104

)::numeric, 2) AS total

FROM costs;

startup | total

−−−−−−−−−+−−−−−−−

7.52 | 7.78

(1 row)

Top-N Heapsort

If a data set needs to be sorted only partially (as defined by the ����� clause), the

heapsort method can be applied (it is represented in the plan as top-N heapsort).

To be more exact, this algorithm is used if sorting reduces the number of rows at

least by half, or if the allocated memory cannot accommodate the whole input set

(while the output set fits it).

=> EXPLAIN (analyze, timing off, summary off)

SELECT * FROM seats

ORDER BY seat_no LIMIT 100;

1 backend/optimizer/path/costsize.c, cost_sort function

450

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/optimizer/path/costsize.c;hb=REL_14_STABLE

23.2 Sorting

QUERY PLAN

−−−

Limit (cost=72.57..72.82 rows=100 width=15)

(actual rows=100 loops=1)

−> Sort (cost=72.57..75.91 rows=1339 width=15)

(actual rows=100 loops=1)

Sort Key: seat_no

Sort Method: top−N heapsort Memory: 33kB

−> Seq Scan on seats (cost=0.00..21.39 rows=1339 width=15)

(actual rows=1339 loops=1)

(8 rows)

To find k highest (or lowest) values out of n, the executor adds the first k rows into

a data structure called heap. Then the rest of the rows get added one by one, and

the smallest (or largest) value is removed from the heap after each iteration. Once

all the rows are processed, the heap contains k sought-after values.

The heap term here denotes a well-known data structure and has nothing to do with

database tables, which are often referred to by the same name.

Cost estimation. The computational complexity of the algorithm is estimated at

O(n log2 k), but each particular operation is more expensive as compared to the

quicksort algorithm. Therefore, the formula uses n log2 2k.
1

=> WITH costs(startup)

AS (

SELECT 21.39 + round((

current_setting('cpu_operator_cost')::real * 2 *

1339 * log(2, 2 * 100)

)::numeric, 2)

)

SELECT startup,

startup + round((

current_setting('cpu_operator_cost')::real * 100

)::numeric, 2) AS total

FROM costs;

startup | total

−−−−−−−−−+−−−−−−−

72.57 | 72.82

(1 row)

1 backend/optimizer/path/costsize.c, cost_sort function

451

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/optimizer/path/costsize.c;hb=REL_14_STABLE

Chapter 23 Sorting and Merging

External Sorting

If the scan shows that the data set is too big to be sorted in memory, the sorting

node switches over to external merge sorting (labeled as external merge in the plan).

The rows that are already scanned are sorted inmemory by the quicksort algorithm

and written into a temporary file.

1 2 3 4 5 1

Subsequent rows are then read into the freed memory, and this procedure is re-

peated until all the data is written into several pre-sorted files.

2 3 4 5 1 2

Next, these files are merged into one. This operation is performed by roughly the

same algorithm that is used for merge joins; the main difference is that it can pro-

cess more than two files at a time.

A merge operation does not need too much memory. In fact, it is enough to have

room for one row per file. The first rows are read from each file, the row with the

lowest value (or the highest one, depending on the sort order) is returned as a

partial result, and the freed memory is filled with the next row fetched from the

same file.

452

23.2 Sorting

In practice, rows are read in batches of �� pages rather than one by one, which

reduces the number of �/� operations. The number of files that are merged in a

single iteration depends on the available memory, but it is never smaller than six.

The upper boundary is also limited (by ���) since efficiency suffers when there are

too many files.1

Sorting algorithms have long-established terminology. External sorting was originally

performed using magnetic tapes, and Postgre��� keeps a similar name for the component

that controls temporary files.2 Partially sorted data sets are called “runs.”3 The number of

runs participating in the merge is referred to as the “merge order.” I did not use these terms,

but they are worth knowing if you want to understand Postgre��� code and comments.

If the sorted temporary files cannot bemerged all at once, they have to be processed

in several passes, their partial results being written into new temporary files. Each

iteration increases the volume of data to be read and written, so the more ��� is

available, the faster the external sorting completes.

1 2 3 4 5 1+2+3

4 5 1+2+3 4+5

1 backend/utils/sort/tuplesort.c, tuplesort_merge_order function
2 backend/utils/sort/logtape.c
3 Donald E. Knuth. The Art of Computer Programming. Volume III. Sorting and Searching

453

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/utils/sort/tuplesort.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/utils/sort/logtape.c;hb=REL_14_STABLE

Chapter 23 Sorting and Merging

The next iteration merges newly created temporary files.

1+2+3 4+5

The final merge is typically deferred and performed on the fly when the upper node

pulls the data.

Let’s run the ������� ������� command to see howmuchdisk space has been used by

external sorting. The ������� option displays buffer usage statistics for temporary

files (temp read and written). The number of written buffers will be (roughly) the

same as the number of read ones; converted to kilobytes, this value is shown as

Disk in the plan:

=> EXPLAIN (analyze, buffers, costs off, timing off, summary off)

SELECT * FROM flights

ORDER BY scheduled_departure;

QUERY PLAN

−−−

Sort (actual rows=214867 loops=1)

Sort Key: scheduled_departure

Sort Method: external merge Disk: 17136kB

Buffers: shared hit=2627, temp read=2142 written=2150

−> Seq Scan on flights (actual rows=214867 loops=1)

Buffers: shared hit=2624

(6 rows)

To print more details on using temporary files into the server log, you can enable

the log_temp_files parameter.

Cost estimation. Let’s take the same plan with external sorting as an example:

=> EXPLAIN SELECT *

FROM flights

ORDER BY scheduled_departure;

454

23.2 Sorting

QUERY PLAN

−−−

Sort (cost=31883.96..32421.12 rows=214867 width=63)

Sort Key: scheduled_departure

−> Seq Scan on flights (cost=0.00..4772.67 rows=214867 width=63)

(3 rows)

Here the regular cost of comparisons (their number is the same as in the case of a

quicksort operation inmemory) is extended by the �/� cost.1 All the input data has

to be first written into temporary files on disk and then read from disk during the

merge operation (possibly more than once if all the created files cannot be merged

in one iteration).

It is assumed that three quarters of disk operations (both reads and writes) are

sequential, while one quarter is random.

The volume of data written to disk depends on the number of rows to be sorted

and the number of columns used in the query.2 In this example, the query displays

all the columns of the flights table, so the size of the data spilled to disk is almost

the same as the size of the whole table if its tuple and page metadata are not taken

into account (���� pages instead of ����).

Here sorting is completed in one iteration.

Therefore, the sorting cost is estimated in this plan as follows:

=> WITH costs(startup) AS (

SELECT 4772.67 + round((

current_setting('cpu_operator_cost')::real * 2 *

214867 * log(2, 214867) +

(current_setting('seq_page_cost')::real * 0.75 +

current_setting('random_page_cost')::real * 0.25) *

2 * 2309 * 1 -- one iteration

)::numeric, 2)

)

SELECT startup,

startup + round((

current_setting('cpu_operator_cost')::real * 214867

)::numeric, 2) AS total

FROM costs;

1 backend/optimizer/path/costsize.c, cost_sort function
2 backend/optimizer/path/costsize.c, relation_byte_size function

455

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/optimizer/path/costsize.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/optimizer/path/costsize.c;hb=REL_14_STABLE

Chapter 23 Sorting and Merging

startup | total

−−−−−−−−−−+−−−−−−−−−−

31883.96 | 32421.13

(1 row)

Incremental Sortingv. ��

If a data set has to be sorted by keys K1 …Km …Kn, and this data set is known to

be already sorted by the first m keys, you do not have to re-sort it from scratch.

Instead, you can split this set into groups by the same first keys K1 …Km (values in

these groups already follow the defined order), and then sort each of these groups

separately by the remaining Km+1 …Kn keys. This method is called the incremental

sort.

Incremental sorting is less memory-intensive than other sorting algorithms, as it

splits the set into several smaller groups; besides, it allows the executor to start

returning results after the first group is processed, without waiting for the whole

set to be sorted.

In Postgre���, the implementation is a bitmore subtle:1 while relatively big groups

of rows are processed separately, smaller groups are combined together and are

sorted in full. It reduces the overhead incurred by invoking the sorting procedure.2

The execution plan represents incremental sorting by the Incremental Sort node:

=> EXPLAIN (analyze, costs off, timing off, summary off)

SELECT * FROM bookings

ORDER BY total_amount, book_date;

QUERY PLAN

−−

Incremental Sort (actual rows=2111110 loops=1)

Sort Key: total_amount, book_date

Presorted Key: total_amount

Full−sort Groups: 2823 Sort Method: quicksort Average

Memory: 30kB Peak Memory: 30kB

Pre−sorted Groups: 2624 Sort Method: quicksort Average

1 backend/executor/nodeIncrementalSort.c
2 backend/utils/sort/tuplesort.c

456

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/executor/nodeIncrementalSort.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/utils/sort/tuplesort.c;hb=REL_14_STABLE

23.2 Sorting

Memory: 3152kB Peak Memory: 3259kB

−> Index Scan using bookings_total_amount_idx on bookings (ac...

(8 rows)

As the plan shows, the data set is pre-sorted by the total_amount field, as it is the

result of an index scan run on this column (Presorted Key). The ������� �������

command also displays run-time statistics. The Full-sort Groups row is related to

small groups that were united to be sorted in full, while the Presorted Groups row

displays the data on large groups with partially ordered data, which required in-

cremental sorting by the book_date column only. In both cases, the in-memory

quicksort method was applied. The difference in group sizes is due to non-uniform

distribution of booking costs.

Incremental sorting v. ��can be used to compute window functions too:

=> EXPLAIN (costs off)

SELECT row_number() OVER (ORDER BY total_amount, book_date)

FROM bookings;

QUERY PLAN

−−−

WindowAgg

−> Incremental Sort

Sort Key: total_amount, book_date

Presorted Key: total_amount

−> Index Scan using bookings_total_amount_idx on bookings

(5 rows)

Cost estimation. Cost calculations for incremental sorting1 are based on the ex-

pected number of groups2 and the estimated sorting cost of an average-sized group

(which we have already reviewed).

The startup cost reflects the cost estimation of sorting the first group,which allows

the node to start returning sorted rows; the total cost includes the sorting cost of

all groups.

We are not going to explore these calculations any further here.

1 backend/optimizer/path/costsize.c, cost_incremental_sort function
2 backend/utils/adt/selfuncs.c, estimate_num_groups function

457

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/optimizer/path/costsize.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/utils/adt/selfuncs.c;hb=REL_14_STABLE

Chapter 23 Sorting and Merging

Parallel Modev. ��

Sorting can also be performed concurrently. But although parallel workers do pre-

sort their data shares, the Gather node knows nothing about their sort order and

can only accumulate them on a first-come, first-serve basis. To preserve the sort

order, the executor has to apply the Gather Merge node.1

=> EXPLAIN (analyze, costs off, timing off, summary off)

SELECT *

FROM flights

ORDER BY scheduled_departure

LIMIT 10;

QUERY PLAN

−−−

Limit (actual rows=10 loops=1)

−> Gather Merge (actual rows=10 loops=1)

Workers Planned: 1

Workers Launched: 1

−> Sort (actual rows=7 loops=2)

Sort Key: scheduled_departure

Sort Method: top−N heapsort Memory: 27kB

Worker 0: Sort Method: top−N heapsort Memory: 27kB

−> Parallel Seq Scan on flights (actual rows=107434 lo...

(9 rows)

The Gather Merge node uses a binary heap2 to adjust the order of rows fetched by

several workers. It virtually merges several sorted sets of rows, just like external

sorting would do, but is designed for a different use case: Gather Merge typically

handles a small fixed number of data sources and fetches rows one by one rather

than block by block.

Cost estimation. The startup cost of the Gather Merge node is based on the startup

cost of its child node. Just like for the Gather nodep. ��� , this value is increased by the

cost of launching parallel processes (estimated at1000 parallel_setup_cost).

1 backend/executor/nodeGatherMerge.c
2 backend/lib/binaryheap.c

458

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/executor/nodeGatherMerge.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/lib/binaryheap.c;hb=REL_14_STABLE

23.2 Sorting

The received value is then further extended by the cost of building a binary heap,

which requires sorting n values, where n is the number of parallel workers (that is,

n log2 n). A single comparison operation is estimated at doubled 0.0025cpu_operator_cost,

and total share of such operations is typically negligible since n is quite small.

The total cost includes the expenses incurred by fetching all the data by several

processes that perform the parallel part of the plan, and the cost of transferring this

data to the leader. A single row transfer is estimated at 0.1parallel_tuple_cost increased

by �%, to compensate for possible waits on getting the next values.

The expenses incurred by binary heap updates must also be taken into account in

total cost calculations: each input row requires log2 n comparison operations and

certain additional actions (they are estimated at cpu_operator_cost).1

Let’s take a look at yet another plan that uses the Gather Merge node. Note that the

workers here first perform partial aggregation by hashing p. ���, and then the Sort node

sorts the received results (it is cheap because few rows are left after aggregation) to

be passed further to the leader process, which gathers the full result in the Gather

Merge node. As for the final aggregation, it is performed on the sorted list of values:

=> EXPLAIN SELECT amount, count(*)

FROM ticket_flights

GROUP BY amount;

QUERY PLAN

−−−

Finalize GroupAggregate (cost=123399.62..123485.00 rows=337 wid...

Group Key: amount

−> Gather Merge (cost=123399.62..123478.26 rows=674 width=14)

Workers Planned: 2

−> Sort (cost=122399.59..122400.44 rows=337 width=14)

Sort Key: amount

−> Partial HashAggregate (cost=122382.07..122385.44 r...

Group Key: amount

−> Parallel Seq Scan on ticket_flights (cost=0.00...

(9 rows)

Here we have three parallel processes (including the leader), and the cost of the

Gather Merge node is calculated as follows:

1 backend/optimizer/path/costsize.c, cost_gather_merge function

459

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/optimizer/path/costsize.c;hb=REL_14_STABLE

Chapter 23 Sorting and Merging

=> WITH costs(startup, run) AS (

SELECT round((

-- launching processes

current_setting('parallel_setup_cost')::real +

-- building the heap

current_setting('cpu_operator_cost')::real * 2 * 3 * log(2, 3)

)::numeric, 2),

round((

-- passing rows

current_setting('parallel_tuple_cost')::real * 1.05 * 674 +

-- updating the heap

current_setting('cpu_operator_cost')::real * 2 * 674 * log(2, 3) +

current_setting('cpu_operator_cost')::real * 674

)::numeric, 2)

)

SELECT 122399.59 + startup AS startup,

122400.44 + startup + run AS total

FROM costs;

startup | total

−−−−−−−−−−−+−−−−−−−−−−−

123399.61 | 123478.26

(1 row)

23.3 Distinct Values and Grouping

As we have just seen, grouping values to perform aggregation (and to eliminate

duplicates) can be performed not only by hashing, but also by sorting. In a sorted

list, groups of duplicate values can be singled out in one pass.

Retrieval of distinct values from a sorted list is represented in the plan by a very

simple node called Unique1:

=> EXPLAIN (costs off) SELECT DISTINCT book_ref

FROM bookings

ORDER BY book_ref;

QUERY PLAN

−−

Result

−> Unique

−> Index Only Scan using bookings_pkey on bookings

(3 rows)

1 backend/executor/nodeUnique.c

460

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/executor/nodeUnique.c;hb=REL_14_STABLE

23.3 Distinct Values and Grouping

Aggregation is performed in the GroupAggregate node:1

=> EXPLAIN (costs off) SELECT book_ref, count(*)

FROM bookings

GROUP BY book_ref

ORDER BY book_ref;

QUERY PLAN

−−

GroupAggregate

Group Key: book_ref

−> Index Only Scan using bookings_pkey on bookings

(3 rows)

In parallel plans, this node is called Partial GroupAggregate, while the node that

completes aggregation is called Finalize GroupAggregate.

Both hashing and sorting strategies v. ��can be combined in a single node if group-

ing is performed by several column sets (specified in the �������� ����, ����, or

������ clauses). Without getting into rather complex details of this algorithm, I

will simply provide an example that performs grouping by three different columns

in conditions of scarce memory:

=> SET work_mem = '64kB';

=> EXPLAIN (costs off) SELECT count(*)

FROM flights

GROUP BY GROUPING SETS (aircraft_code, flight_no, departure_airport);

QUERY PLAN

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

MixedAggregate

Hash Key: departure_airport

Group Key: aircraft_code

Sort Key: flight_no

Group Key: flight_no

−> Sort

Sort Key: aircraft_code

−> Seq Scan on flights

(8 rows)

=> RESET work_mem;

Here is what happens while this query is being executed. The aggregation node,

which is shown in the plan as MixedAggregate, receives the data set sorted by the

aircraft_code column.

1 backend/executor/nodeAgg.c, agg_retrieve_direct function

461

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/executor/nodeAgg.c;hb=REL_14_STABLE

Chapter 23 Sorting and Merging

First, this set is scanned, and the values are grouped by the aircraft_code column

(Group Key). As the scan progresses, the rows are reordered by the flight_no column

(like it is done by a regular Sort node: either via the quicksort method if the mem-

ory is sufficient, or using external sorting on disk); at the same time, the executor

places these rows into a hash table that uses departure_airport as its key (like it is

done by hash aggregation: either in memory, or using temporary files).

At the second stage, the executor scans the data set that has just been sorted by

the flight_no column and groups the values by the same column (Sort Key and the

nested Group Key node). If the rows had to be grouped by yet another column, they

would be resorted again as required.

Finally, the hash table prepared at the first stage is scanned, and the values are

grouped by the departure_airport column (Hash Key).

23.4 Comparison of Join Methods

As we have seen, two data sets can be joined using three different methods, and

each of them has its own pros and cons.

The nested loop join does not have any prerequisites and can start returning the first

rows of the result set right away. It is the only join method that does not have to

fully scan the inner set (as long as index access is available for it). These properties

make the nested loop algorithm (combined with indexes) an ideal choice for short

���� queries, which deal with rather small sets of rows.

The weak point of the nested loop becomes apparent as the data volume grows. For

a Cartesian product, this algorithm has quadratic complexity—the cost is propor-

tionate to the product of sizes of the data sets being joined. However, the Cartesian

product is not so common in practice; for each row of the outer set, the executor

typically accesses a certain number of rows of the inner set using an index, and

this average number does not depend on the total size of the data set (for exam-

ple, an average number of tickets in a booking does not change as the number of

bookings and bought tickets grows). Thus, the complexity of the nested loop al-

gorithm often shows linear growth rather than quadratic one, even if with a high

linear coefficient.

462

23.4 Comparison of Join Methods

An important distinction of the nested loop algorithm is its universal applicability:

it supports all join conditions, whereas other methods can only deal with equi-

joins. It allows running queries with any types of conditions (except for the full

join, which cannot be used with the nested loop), but you must keep in mind that

a non-equi-join of a large data set is highly likely to be performed slower than

desired.

A hash join works best on large data sets. If ��� is sufficient, it requires only one

pass over two data sets, so its complexity is linear. Combined with sequential table

scans, this algorithm is typically used for ���� queries, which compute the result

based on a large volume of data.

However, if the response time is more important than throughput, a hash join is

not the best choice: it will not start returning the resulting rows until the whole

hash table is built.

The hash join algorithm is only applicable to equi-joins. Another restriction is that

the data type of the join key must support hashing (but almost all of them do).

The nested loop join v. ��can sometimes beat the hash join, taking advantage of caching

the rows of the inner set in theMemoize node (which is also based on a hash table).

While the hash join always scans the inner set in full, the nested loop algorithm

does not have to, which may result in some cost reduction.

A merge join can perfectly handle both short ���� queries and long ���� ones. It

has linear complexity (the sets to be joined have to be scanned only once), does

not require much memory, and returns the results without any preprocessing;

however, the data sets must already have the required sort order. The most cost-

effective way to do it is to fetch the data via an index scan. It is a natural choice if

the row count is low; for larger data sets, index scans can still be efficient, but only

if the heap access is minimal or does not happen at all.

If no suitable indexes are available, the sets have to be sorted, but this operation

is memory-intensive, and its complexity is higher than linear: O(n log2 n). In this

case, a hash join is almost always cheaper than a merge join—unless the result has

to be sorted.

An added bonus of a merge join is the equivalence of the inner and outer sets. The

efficiency of both nested loop and hash joins is highly dependent on whether the

planner can assign inner and outer sets correctly.

463

Chapter 23 Sorting and Merging

Merge joins are limited to equi-joins. Besides, the data type must have a �-tree

operator class.

The following graph illustrates approximate dependencies between the costs of

various join methods and the fraction of rows to be joined.

selectivity

cost

0 1

nest
ed l

oop

merge joi
n + sort

hash join

merge join + index

If the selectivity is high, the nested loop join uses index access for both tables; then

the planner switches to the full scan of the outer table, which is reflected by the

linear part of the graph.

Here the hash join is using a full scan for both tables. The “step” on the graph

corresponds to the moment when the hash table fills the whole memory and the

batches start getting spilled to disk.

If an index scan is used, the cost of a merge join shows small linear growth. If the

work_mem size is big enough, a hash join is usually more efficient, but a merge join

beats it when it comes to temporary files.

The upper graph of the sort-merge join shows that the costs rise when indexes are

unavailable and the data has to be sorted. Just like in the case of a hash join, the

464

23.4 Comparison of Join Methods

“step”on the graph is caused by insufficientmemory, as it leads to using temporary

files for sorting.

It is merely an example; in each particular case the ratio between the costs will be

different.

465

Part V

Types of Indexes

24
Hash

24.1 Overview

A hash index1 provides the ability to quickly find a tuple �� (���) by a particular

index key. Roughly speaking, it is simply a hash table stored on disk. The only

operation supported by a hash index is search by the equality condition.

When a value is inserted into an index,2 the hash function of the index key is

computed. In Postgre���, hash functions return ��-bit or ��-bit integers; several

lowest bits of these values are used as the number of the corresponding bucket.

The ��� and the hash code of the key are added into the chosen bucket. The key

itself is not stored in the index because it is more convenient to deal with small

fixed-length values.

The hash table of an index is expanded dynamically.3 Theminimal number of buck-

ets is two. As the number of indexed tuples grows, one of the buckets gets split into

two. This operation uses one more bit of the hash code, so the elements are redis-

tributed only between the two buckets resulting from the split; the composition of

other buckets of the hash table remains the same.4

The index search operation5 calculates the hash function of the index key and the

corresponding bucket number. Of all the bucket contents, the search will return

only those ���s that correspond to the hash code of the key. As bucket elements

1 postgresql.org/docs/14/hash-index.html

backend/access/hash/README
2 backend/access/hash/hashinsert.c
3 backend/access/hash/hashpage.c, _hash_expandtable function
4 backend/access/hash/hashpage.c, _hash_getbucketbuf_from_hashkey function
5 backend/access/hash/hashsearch.c

469

https://postgresql.org/docs/14/hash-index.html
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/hash/README;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/hash/hashinsert.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/hash/hashpage.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/hash/hashpage.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/hash/hashsearch.c;hb=REL_14_STABLE

Chapter 24 Hash

are ordered by the keys’ hash codes, binary search can return matching ���s quite

efficiently.

Since keys are not stored in the hash table, the index access method may return

redundant ���s because of hash collisions. Therefore, the indexing engine has to

recheckp. ��� all the results fetched by the access method. An index-only scan is not

supported for the same reason.

24.2 Page Layout

Unlike a regular hash table, the hash index is stored on disk. Therefore, all the

data has to be arranged into pages, preferably in such a way that index operations

(search, insertion, deletion) require access to as few pages as possible.

A hash index uses four types of pages:

• metapage—page zero that provides the “table of contents” of an index

• bucket pages—the main pages of an index, one per bucket

• overflow pages—additional pages that are used when the main bucket page

cannot accommodate all the elements

• bitmap pages—pages containing the bit array used to track overflowpages that

have been freed and can be reused

We can peek into index pagesv. �� using the pageinspect extension.

Let’s begin with an empty table:

=> CREATE EXTENSION pageinspect;

=> CREATE TABLE t(n integer);

=> ANALYZE t;

=> CREATE INDEX ON t USING hash(n);

I have analyzed the table,v. �� so the created index will have the minimal size possible;

otherwise, the number of buckets would have been selected based on the assump-

tion that the table contains ten pages.1

1 backend/access/table/tableam.c, table_block_relation_estimate_size function

470

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/table/tableam.c;hb=REL_14_STABLE

24.2 Page Layout

The index contains four pages: the metapage, two bucket pages, and one bitmap

page (created at once for future use):

=> SELECT page, hash_page_type(get_raw_page('t_n_idx', page))

FROM generate_series(0,3) page;

page | hash_page_type

−−−−−−+−−−−−−−−−−−−−−−−

0 | metapage

1 | bucket

2 | bucket

3 | bitmap

(4 rows)

bucket 0bucket 0 bucket 1bucket 1meta-
page bitmap

The metapage contains all the control information about the index. We are inter-

ested only in a few values at the moment:

=> SELECT ntuples, ffactor, maxbucket

FROM hash_metapage_info(get_raw_page('t_n_idx', 0));

ntuples | ffactor | maxbucket

−−−−−−−−−+−−−−−−−−−+−−−−−−−−−−−

0 | 307 | 1

(1 row)

The estimated number of rows per bucket is shown in the ffactor field. This value

is calculated based on the block size and the 75fillfactor storage parameter value. By

absolutely uniform data distribution and no hash collisions you could use a higher

fillfactor value, but in real-life databases it increases the risk of page overflows.

The worst scenario for a hash index is a large skew in data distribution, when a key

is repeated multiple times. Since the hash function will be returning one and the

same value, all the data will be placed into the same bucket, and increasing the

number of buckets will not help.

Now the index is empty, as shown by the ntuples field. Let’s cause a bucket page

overflow by inserting v. ��multiple rows with the same value of the index key. An over-

flow page appears in the index:

471

Chapter 24 Hash

=> INSERT INTO t(n)

SELECT 0 FROM generate_series(1,500); -- the same value

=> SELECT page, hash_page_type(get_raw_page('t_n_idx', page))

FROM generate_series(0,4) page;

page | hash_page_type

−−−−−−+−−−−−−−−−−−−−−−−

0 | metapage

1 | bucket

2 | bucket

3 | bitmap

4 | overflow

(5 rows)

bucket 0bucket 0 bucket 1bucket 1meta-
page bitmap bucket 1bucket 1bucket 1bucket 1

overflow

The combined statistics on all the pages shows that bucket � is empty, while all the

values have been placed into bucket �: some of them are located in the main page,

and those that did not fit it can be found in the overflow page.

=> SELECT page, live_items, free_size, hasho_bucket

FROM (VALUES (1), (2), (4)) p(page),

hash_page_stats(get_raw_page('t_n_idx', page));

page | live_items | free_size | hasho_bucket

−−−−−−+−−−−−−−−−−−−+−−−−−−−−−−−+−−−−−−−−−−−−−−

1 | 0 | 8148 | 0

2 | 407 | 8 | 1

4 | 93 | 6288 | 1

(3 rows)

It is clear that if the elements of one and the same bucket are spread over several

pages, performance will suffer. A hash index shows best results if data distribution

is uniform.

Now let’s take a look at how a bucket can be split. It happens when the number

of rows in the index exceeds the estimated ffactor value for the available buckets.

Here we have two buckets, and the ffactor is ���, so it will happen when the ���th

row is inserted into the index:

472

24.2 Page Layout

=> SELECT ntuples, ffactor, maxbucket, ovflpoint

FROM hash_metapage_info(get_raw_page('t_n_idx', 0));

ntuples | ffactor | maxbucket | ovflpoint

−−−−−−−−−+−−−−−−−−−+−−−−−−−−−−−+−−−−−−−−−−−

500 | 307 | 1 | 1

(1 row)

=> INSERT INTO t(n)

SELECT n FROM generate_series(1,115) n; -- now values are different

=> SELECT ntuples, ffactor, maxbucket, ovflpoint

FROM hash_metapage_info(get_raw_page('t_n_idx', 0));

ntuples | ffactor | maxbucket | ovflpoint

−−−−−−−−−+−−−−−−−−−+−−−−−−−−−−−+−−−−−−−−−−−

615 | 307 | 2 | 2

(1 row)

Themaxbucket value has been increased to two: now we have three buckets, num-

bered from � to �. But even though we have added only one bucket, the number of

pages has doubled:

=> SELECT page, hash_page_type(get_raw_page('t_n_idx', page))

FROM generate_series(0,6) page;

page | hash_page_type

−−−−−−+−−−−−−−−−−−−−−−−

0 | metapage

1 | bucket

2 | bucket

3 | bitmap

4 | overflow

5 | bucket

6 | unused

(7 rows)

bucket 0bucket 0 bucket 1bucket 1meta-
page bitmap bucket 1bucket 1 bucket 2bucket 2bucket 1bucket 1

One of the new pages is used by bucket �, while the other one remains free and will

be used by bucket � as soon as it appears.

=> SELECT page, live_items, free_size, hasho_bucket

FROM (VALUES (1), (2), (4), (5)) p(page),

hash_page_stats(get_raw_page('t_n_idx', page));

473

Chapter 24 Hash

page | live_items | free_size | hasho_bucket

−−−−−−+−−−−−−−−−−−−+−−−−−−−−−−−+−−−−−−−−−−−−−−

1 | 27 | 7608 | 0

2 | 407 | 8 | 1

4 | 158 | 4988 | 1

5 | 23 | 7688 | 2

(4 rows)

Thus, from the point of view of the operating system, the hash index grows in

spurts, although from the logical standpoint the hash table shows gradual growth.

To level outv. �� this growth to some extent and avoid allocating too many pages at

a time, starting from the tenth increase pages get allocated in four equal batches

rather than all at once.

Twomore fields of the metapage, which are virtually bit masks, provide the details

on bucket addresses:

=> SELECT maxbucket, highmask::bit(4), lowmask::bit(4)

FROM hash_metapage_info(get_raw_page('t_n_idx', 0));

maxbucket | highmask | lowmask

−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−

2 | 0011 | 0001

(1 row)

A bucket number is defined by the hash code bits that correspond to the highmask.

But if the received bucket number does not exist (exceedsmaxbucket), the lowmask

bits are taken.1 In this particular case, we take two lowest bits, which gives us the

values from � to �; but if we got �, we would take only one lowest bit, that is, use

bucket � instead of bucket �.

Each time the size is doubled, new bucket pages are allocated as a single continu-

ous chunk, while overflow and bitmap pages get inserted between these fragments

as required. The metapage keeps the number of pages inserted into each of the

chunks in the spares array, which gives us an opportunity to calculate the number

of its main page based on the bucket number using simple arithmetic.2

In this particular case, the first increase was followed by insertion of two pages (a

bitmap page and an overflow page), but no new additions have happened after the

second increase yet:

1 backend/access/hash/hashutil.c, _hash_hashkey2bucket function
2 include/access/hash.h, BUCKET_TO_BLKNO macro

474

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/hash/hashutil.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/include/access/hash.h;hb=REL_14_STABLE

24.2 Page Layout

=> SELECT spares[2], spares[3]

FROM hash_metapage_info(get_raw_page('t_n_idx', 0));

spares | spares

−−−−−−−−+−−−−−−−−

2 | 2

(1 row)

The metapage also stores an array of pointers to bitmap pages:

=> SELECT mapp[1]

FROM hash_metapage_info(get_raw_page('t_n_idx', 0));

mapp

−−−−−−

3

(1 row)

bucket 0bucket 0 bucket 1bucket 1meta-
page bitmap bucket 1bucket 1 bucket 2bucket 2

spares

mmap

The space within index pages is freed when pointers to dead tuples are removed.

It happens during page pruning (which is triggered by an attempt to insert an ele-

ment into a completely filled page)1 or when routine vacuuming is performed.

However, a hash index cannot shrink: once allocated, index pages will not be re-

turned to the operating system. The main pages are permanently assigned to their

buckets, even if they contain no elements at all; the cleared overflow pages are

tracked in the bitmap and can be reused (possibly by another bucket). The only

way to reduce the physical size of an index is to rebuild it using the ������� or

������ ���� p. ���commands.

The query plan has no indication of the index type:

=> CREATE INDEX ON flights USING hash(flight_no);

1 backend/access/hash/hashinsert.c, _hash_vacuum_one_page function

475

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/hash/hashinsert.c;hb=REL_14_STABLE

Chapter 24 Hash

=> EXPLAIN (costs off)

SELECT *

FROM flights

WHERE flight_no = 'PG0001';

QUERY PLAN

−−

Bitmap Heap Scan on flights

Recheck Cond: (flight_no = 'PG0001'::bpchar)

−> Bitmap Index Scan on flights_flight_no_idx

Index Cond: (flight_no = 'PG0001'::bpchar)

(4 rows)

24.3 Operator Class

Prior to Postgre��� ��, hash indexes were not logged, that is, theywere neither pro-

tected against failures nor replicated, and consequently, it was not recommended

to use them. But even then they had their own value. The thing is that the hashing

algorithm is widely used (in particular, to perform hash joinsp. ��� and grouping), and

the system must know which hash function can be used for a certain data type.

However, this correspondence is not static: it cannot be defined once and for all

since Postgre��� allows adding new data types on the fly. Therefore, it is main-

tained by thep. ��� operator class of the hash index and a particular data type. The hash

function itself is represented by the support function of the class:

=> SELECT opfname AS opfamily_name,

amproc::regproc AS opfamily_procedure

FROM pg_am am

JOIN pg_opfamily opf ON opfmethod = am.oid

JOIN pg_amproc amproc ON amprocfamily = opf.oid

WHERE amname = 'hash'

AND amprocnum = 1

ORDER BY opfamily_name, opfamily_procedure;

opfamily_name | opfamily_procedure

−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−

aclitem_ops | hash_aclitem

array_ops | hash_array

bool_ops | hashchar

bpchar_ops | hashbpchar

bpchar_pattern_ops | hashbpchar

...

476

24.4 Properties

timetz_ops | timetz_hash

uuid_ops | uuid_hash

xid8_ops | hashint8

xid_ops | hashint4

(38 rows)

These functions return ��-bit integers. Although they are not documented, they

can be used to calculate the hash code for a value of the corresponding type.

For example, the text_ops family uses the hashtext function:

=> SELECT hashtext('one'), hashtext('two');

hashtext | hashtext

−−−−−−−−−−−−+−−−−−−−−−−−−

1793019229 | 1590507854

(1 row)

The operator class of the hash index provides only the equal to operator:

=> SELECT opfname AS opfamily_name,

left(amopopr::regoperator::text, 20) AS opfamily_operator

FROM pg_am am

JOIN pg_opfamily opf ON opfmethod = am.oid

JOIN pg_amop amop ON amopfamily = opf.oid

WHERE amname = 'hash'

ORDER BY opfamily_name, opfamily_operator;

opfamily_name | opfamily_operator

−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−

aclitem_ops | =(aclitem,aclitem)

array_ops | =(anyarray,anyarray)

bool_ops | =(boolean,boolean)

...

uuid_ops | =(uuid,uuid)

xid8_ops | =(xid8,xid8)

xid_ops | =(xid,xid)

(48 rows)

24.4 Properties

Let’s take a look at the index-level properties p. ���that the hash access method imparts

to the system.

477

Chapter 24 Hash

Access Method Properties

=> SELECT a.amname, p.name, pg_indexam_has_property(a.oid, p.name)

FROM pg_am a, unnest(array[

'can_order', 'can_unique', 'can_multi_col',

'can_exclude', 'can_include'

]) p(name)

WHERE a.amname = 'hash';

amname | name | pg_indexam_has_property

−−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−

hash | can_order | f

hash | can_unique | f

hash | can_multi_col | f

hash | can_exclude | t

hash | can_include | f

(5 rows)

It is clear that hash indexes cannot be used for row ordering: the hash function

mixes the data more or less randomly.

Unique constraints are not supported either. However, hash indexes can enforce

exclusionp. ��� constraints, and since the only supported function is equal to, this exclu-

sion attains the meaning of uniqueness:

=> ALTER TABLE aircrafts_data

ADD CONSTRAINT unique_range EXCLUDE USING hash(range WITH =);

=> INSERT INTO aircrafts_data

VALUES ('744','{"ru": "Boeing 747-400"}',11100);

ERROR: conflicting key value violates exclusion constraint

"unique_range"

DETAIL: Key (range)=(11100) conflicts with existing key

(range)=(11100).

Multicolumn indexes and additional ������� columns are not supported either.

Index-Level Properties

=> SELECT p.name, pg_index_has_property('flights_flight_no_idx', p.name)

FROM unnest(array[

'clusterable', 'index_scan', 'bitmap_scan', 'backward_scan'

]) p(name);

478

24.4 Properties

name | pg_index_has_property

−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−

clusterable | f

index_scan | t

bitmap_scan | t

backward_scan | t

(4 rows)

The hash index supports both a regular index scan and a bitmap scan.

Table clusterization by the hash index is not supported. It is quite logical, as it is

hard to imagine why it may be necessary to physically order heap data based on

the hash function value.

Column-Level Properties

Column-level properties are virtually defined by the index access method and al-

ways take the same values.

=> SELECT p.name,

pg_index_column_has_property('flights_flight_no_idx', 1, p.name)

FROM unnest(array[

'asc', 'desc', 'nulls_first', 'nulls_last', 'orderable',

'distance_orderable', 'returnable', 'search_array', 'search_nulls'

]) p(name);

name | pg_index_column_has_property

−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

asc | f

desc | f

nulls_first | f

nulls_last | f

orderable | f

distance_orderable | f

returnable | f

search_array | f

search_nulls | f

(9 rows)

Since the hash function does not preserve the order of values, all the properties

related to ordering are inapplicable to the hash index.

479

Chapter 24 Hash

The hash index cannot participate in an index-only scan, as it does not store the

index key and requires heap access.

The hash index does not support ���� values, since the equal to operation is inap-

plicable to them.

Search for elements in an array is not implemented either.

480

25
B-tree

25.1 Overview

A �-tree (implemented as the btree access method) is a data structure that enables

you to quickly find the required element in leaf nodes of the tree by going down

from its root.1 For the search path to be unambiguously identified, all tree ele-

ments must be ordered. B-trees are designed for ordinal data types, whose values

can be compared and sorted.

The following schematic diagram of an index build over airport codes shows inner

nodes as horizontal rectangles; leaf nodes are aligned vertically.

AER OVBAER OVB

AER DME KZNAER DME KZN OVB ROV SVOOVB ROV SVO

AER

BZK

AER

BZK

DME

HMA

KJA

DME

HMA

KJA

KZN

LED

NUX

KZN

LED

NUX

OVB

OVS

PEE

OVB

OVS

PEE

ROV

SGC

ROV

SGC

SVO

SVX

VKO

SVO

SVX

VKO

1 postgresql.org/docs/14/btree.html

backend/access/nbtree/README

481

https://postgresql.org/docs/14/btree.html
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/nbtree/README;hb=REL_14_STABLE

Chapter 25 B-tree

Each tree node contains several elements, which consist of an index key and a

pointer. Inner node elements reference nodes of the next level; leaf node elements

reference heap tuples (the illustration does not show these references).

B-trees have the following important properties:

• They are balanced, which means that all leaf nodes of a tree are located at the

same depth. Therefore, they guarantee equal search time for all values.

• They have plenty of branches, that is, each node contains many elements, of-

ten hundreds of them (the illustration shows three-element nodes solely for

clarity). As a result, �-tree depth is always small, even for very large tables.

We cannot say with absolute certainty what the letter � in the name of this structure

stands for. Both balanced and bushy fit equally well. Surprisingly, you can often see

it interpreted as binary, which is certainly incorrect.

• Data in an index is sorted either in ascending or in descending order, both

within each node and across all nodes of the same level. Peer nodes are bound

into a bidirectional list, so it is possible to get an ordered set of data by simply

scanning the list one way or the other, without having to start at the root each

time.

25.2 Search and Insertions

Search by Equality

Let’s take a look at how we can search for a value in a tree by condition “indexed-

column = expression”.1 We will try to find the ��� airport (Krasnoyarsk).

The search starts at the root node, and the access method must determine which

child node to descend to. It chooses the Ki key, for which Ki ⩽ expression < Ki+1 is

satisfied.

The root node contains the keys ��� and ���. The condition ���⩽ ���<��� holds

true, so we need to descend into the child node referenced by the element with the

��� key.

1 backend/access/nbtree/nbtsearch.c, _bt_search function

482

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/nbtree/nbtsearch.c;hb=REL_14_STABLE

25.2 Search and Insertions

AER OVBAER OVB

AER DME KZNAER DME KZN OVB ROV SVOOVB ROV SVO

AER

BZK

AER

BZK

DME

HMA

KJA

DME

HMA

KJA

KZN

LED

NUX

KZN

LED

NUX

OVB

OVS

PEE

OVB

OVS

PEE

ROV

SGC

ROV

SGC

SVO

SVX

VKO

SVO

SVX

VKO

This procedure is repeated recursively until we get to the leaf node that contains

the required tuple ��. In this particular case, the child node satisfies the condi-

tion ��� ⩽ ��� < ���, so we have to descend into the leaf node referenced by the

element with the ��� key.

As you can notice, the leftmost keys in the inner nodes of the tree are redundant:

to choose the child node of the root, it is enough to have condition ��� < ���

satisfied. B-trees do not store such keys, so in the illustrations that follow I will

leave the corresponding elements empty.

The required element in the leaf node can be quickly found by binary search.

However, the search procedure is not as trivial as it seems. It must be taken into

account that the sort order of data in an index can be either ascending, like shown

above, or descending. Even a unique index p. ���can have several matching values, and

all of themmust be returned. Moreover, there may be somany duplicates that they

do not fit a single node, so the neighboring leaf node will have to be processed too.

Since an index can contain non-unique values, it would be more accurate to call its order

non-descending rather than ascending (and non-ascending rather than descending). But

I will stick to a simpler term. Besides, the tuple �� is a part of an index key v. ��, which lets us

consider index entries to be unique even if the values are actually the same.

483

Chapter 25 B-tree

On top of that, while the search is in progress, other processes may modify the

data, pages may get split into two, and the tree structure may change. All the algo-

rithms are designed to minimize contention between these concurrent operations

whenever possible and avoid excessive locks, but we are not going to get into these

technicalities here.

Search by Inequality

If the search is performed by condition “indexed-column ⩽ expression” (or “indexed-

column ⩾ expression”), wemust first search the index for the value that satisfies the

equality condition and then traverse its leaf nodes in the required direction until

the end of the tree is reached.

This diagram illustrates the search for airport codes that are less than or equal to

��� (Domodedovo).

AER OVBAER OVB

AER DME KZNAER DME KZN OVB ROV SVOOVB ROV SVO

AER

BZK

AER

BZK

DME

HMA

KJA

DME

HMA

KJA

KZN

LED

NUX

KZN

LED

NUX

OVB

OVS

PEE

OVB

OVS

PEE

ROV

SGC

ROV

SGC

SVO

SVX

VKO

SVO

SVX

VKO

For less than and greater than operators, the procedure is the same, except that the

first found value must be excluded.

Search by Range

When searching by range “expression1 ⩽ indexed-column ⩽ expression2”, we must

first find expression1 and then traverse the leaf nodes in the right direction until

484

25.2 Search and Insertions

we get to expression2. This diagram illustrates the process of searching for airport

codes in the range between ��� (Saint Petersburg) and ��� (Rostov-on-Don), in-

clusive.

AER OVBAER OVB

AER DME KZNAER DME KZN OVB ROV SVOOVB ROV SVO

AER

BZK

AER

BZK

DME

HMA

KJA

DME

HMA

KJA

KZN

LED

NUX

KZN

LED

NUX

OVB

OVS

PEE

OVB

OVS

PEE

ROV

SGC

ROV

SGC

SVO

SVX

VKO

SVO

SVX

VKO

Insertions

The insert position of a new element is unambiguously defined by the order of

keys. For example, if you insert the ��� airport code (Saratov) into the table, the

new element will appear in the last but one leaf node, between ��� and ���.

But what if the leaf node does not have enough space for a new element? For ex-

ample (assuming that a node can accommodate three elements at the most), if we

insert the ��� airport code (Tyumen), the last leaf node will be overfilled. In this

case, the node is split into two, some of the elements of the old node are moved

into the new node, and a pointer to the new child node is added into the parent

node. Obviously, the parent can get overfilled too. Then it is also split into two

nodes, and so on. If it comes to splitting the root, one more node is created above

the resulting nodes to become the new root of the tree. The tree depth is increased

by one level in this case.

In this example, the insertion of the ��� airport led to twonode splits; the resulting

new nodes are highlighted in the diagram below. To make sure that any node can

485

Chapter 25 B-tree

be split, a bidirectional list binds the nodes at all levels, not only those at the lowest

level.

AER OVB SVOAER OVB SVO

AER DME KZNAER DME KZN OVB ROVOVB ROV SVO TJMSVO TJM

AER

BZK

AER

BZK

DME

HMA

KJA

DME

HMA

KJA

KZN

LED

NUX

KZN

LED

NUX

OVB

OVS

PEE

OVB

OVS

PEE

ROV

RTW

SGC

ROV

RTW

SGC

SVO

SVX

SVO

SVX

TJM

VKO

TJM

VKO

The described procedure of insertions and splits guarantees that the tree remains

balanced, and since the number of elements that a node can accommodate is typ-

ically quite large, the tree depth rarely increases.

The problem is that once split, nodes can never be merged together, even if they

contain very few elements after vacuuming. This limitation pertains not to the �-

tree data structure as such, but rather to its Postgre��� implementation. So if the

node turns out to be full when an insertion is attempted, the access method first

tries to prunep. ��� redundant data in order to clear some space and avoid an extra split.

25.3 Page Layout

Each node of a �-tree takes one page. The page’s size defines the node’s capacity.

Because of page splits, the root of the tree can be represented by different pages

at different times. But the search algorithm must always start the scan at the root.

It finds the �� of the current root page in the zero index page (which is called a

metapage). The metapage also contains some other metadata.

486

25.3 Page Layout

metapage

AER OVB SVOAER OVB SVO

AER DME KZN OVBAER DME KZN OVB OVB ROV SVOOVB ROV SVO SVO TJMSVO TJM

AER

BZK

DME

AER

BZK

DME

DME

HMA

KJA

KZN

DME

HMA

KJA

KZN

KZN

LED

NUX

OVB

KZN

LED

NUX

OVB

OVB

OVS

PEE

ROV

OVB

OVS

PEE

ROV

ROV

RTW

SGC

SVO

ROV

RTW

SGC

SVO

SVO

SVX

TJM

SVO

SVX

TJM

TJM

VKO

TJM

VKO0

1

2

Data layout in index pages is a bit different from what we have seen so far. All

the pages, except the rightmost ones at each level, contain an additional “high

key,” which is guaranteed to be not smaller than any key in this page. In the above

diagram high keys are highlighted.

Let’s use the pageinspect extension to take a look at a page of a real index built

upon six-digit booking references. The metapage lists the root page �� and the

depth of the tree (level numbering starts from leaf nodes and is zero-based):

=> SELECT root, level

FROM bt_metap('bookings_pkey');

root | level

−−−−−−+−−−−−−−

290 | 2

(1 row)

487

Chapter 25 B-tree

The keys stored in index entries are displayed as sequences of bytes, which is not

really convenient:

=> SELECT data

FROM bt_page_items('bookings_pkey',290)

WHERE itemoffset = 2;

data

−−−−−−−−−−−−−−−−−−−−−−−−−

0f 30 43 39 41 42 31 00

(1 row)

To decipher these values, we will have to write an adhoc function. It will not sup-

port all platforms andmay not work for some particular scenarios, but it will do for

the examples in this chapter:

=> CREATE FUNCTION data_to_text(data text)

RETURNS text

AS $$

DECLARE

raw bytea := ('\x'||replace(data,' ',''))::bytea;

pos integer := 0;

len integer;

res text := '';

BEGIN

WHILE (octet_length(raw) > pos)

LOOP

len := (get_byte(raw,pos) - 3) / 2;

EXIT WHEN len <= 0;

IF pos > 0 THEN

res := res || ', ';

END IF;

res := res || (

SELECT string_agg(chr(get_byte(raw, i)),'')

FROM generate_series(pos+1,pos+len) i

);

pos := pos + len + 1;

END LOOP;

RETURN res;

END;

$$ LANGUAGE plpgsql;

Now we can take a look at the contents of the root page:

488

25.3 Page Layout

=> SELECT itemoffset, ctid, data_to_text(data)

FROM bt_page_items('bookings_pkey',290);

itemoffset | ctid | data_to_text

−−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−−−−−

1 | (3,0) |

2 | (289,1) | 0C9AB1

3 | (575,1) | 192F03

4 | (860,1) | 25D715

5 | (1145,1) | 32785C

...

17 | (4565,1) | C993F6

18 | (4850,1) | D63931

19 | (5135,1) | E2CB14

20 | (5420,1) | EF6FEA

21 | (5705,1) | FC147D

(21 rows)

As I have said, the first entry contains no key. The ctid column provides links to

child pages.

Suppose we are looking for booking ������. In this case, we have to choose entry

�� (since ������ ⩽ ������ < ������) and go down to page ����.

=> SELECT itemoffset, ctid, data_to_text(data)

FROM bt_page_items('bookings_pkey',5135);

itemoffset | ctid | data_to_text

−−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−−−−−

1 | (5417,1) | EF6FEA

2 | (5132,0) |

3 | (5133,1) | E2D71D

4 | (5134,1) | E2E2F4

5 | (5136,1) | E2EDE7

...

282 | (5413,1) | EF41BE

283 | (5414,1) | EF4D69

284 | (5415,1) | EF58D4

285 | (5416,1) | EF6410

(285 rows)

high key

The first entry in this page contains the high key, whichmay seem a bit unexpected.

Logically, it should have been placed at the end of the page, but from the imple-

mentation standpoint it is more convenient to have it at the beginning to avoid

moving it each time the page content changes.

489

Chapter 25 B-tree

Here we choose entry � (since ������ ⩽ ������ < ������) and go down to page

�����.

=> SELECT itemoffset, ctid, data_to_text(data)

FROM bt_page_items('bookings_pkey',5133);

itemoffset | ctid | data_to_text

−−−−−−−−−−−−+−−−−−−−−−−−−−+−−−−−−−−−−−−−−

1 | (11921,1) | E2E2F4

2 | (11919,76) | E2D71D

3 | (11919,77) | E2D725

4 | (11919,78) | E2D72D

5 | (11919,79) | E2D733

...

363 | (11921,123) | E2E2C9

364 | (11921,124) | E2E2DB

365 | (11921,125) | E2E2DF

366 | (11921,126) | E2E2E5

367 | (11921,127) | E2E2ED

(367 rows)

It is a leaf page of the index. The first entry is the high key; all the other entries

point to heap tuples.

And here is our booking:

=> SELECT * FROM bookings

WHERE ctid = '(11919,77)';

book_ref | book_date | total_amount

−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−

E2D725 | 2017−01−25 04:10:00+03 | 28000.00

(1 row)

This is roughly what happens at the low level when we search for a booking by its

code:

=> EXPLAIN (costs off)

SELECT * FROM bookings

WHERE book_ref = 'E2D725';

QUERY PLAN

−−−

Index Scan using bookings_pkey on bookings

Index Cond: (book_ref = 'E2D725'::bpchar)

(2 rows)

490

25.3 Page Layout

Deduplication v. ��

Non-unique indexes can contain a lot of duplicate keys that point to different heap

tuples. Since non-unique keys appear more than once and hence take much space,

duplicates are collapsed into a single index entry, which contains the key and the

list of the corresponding tuple ��s.1 In some cases, this procedure (which is called

deduplication) can significantly reduce the index size.

However, unique indexes can also contain duplicates because of ����: an index

keeps references to all versions of table rows. The mechanism of ��� updates p. ���can

help you fight index bloating caused by referencing outdated and typically short-

lived row versions, but sometimes it may be inapplicable. In this case, deduplica-

tion can buy some time required to vacuum redundant heap tuples and avert extra

page splits.

To avoid wasting resources on deduplication when it brings no immediate bene-

fits, collapsing is only performed if the leaf page does not have enough space to

accommodate one more tuple.2 Then page pruning and deduplication3 can free

some space and prevent an undesired page split. However, if duplicates are rare,

you can disable the deduplication feature by turning off the deduplicate_items stor-

age parameter.

Some indexes do not support deduplication. The main limitation is that the equal-

ity of keys must be checked by simple binary comparison of their inner represen-

tation. Not all data types by far can be compared this way. For instance, floating-

point numbers (float and double precision) have two different representations for

zero. Arbitrary-precision numbers (numeric) can represent one and the same num-

ber in different scales, while the jsonb type can use such numbers. Neither is

deduplication possible for text types if you use nondeterministic collations,4 which

allow the same symbols to be represented by different byte sequences (standard

collations are deterministic).

Besides, deduplication is currently not supported for composite types, ranges, and

arrays, as well as for indexes declared with the ������� clause.

1 postgresql.org/docs/14/btree-implementation#BTREE-DEDUPLICATION.html
2 backend/access/nbtree/nbtinsert.c, _bt_delete_or_dedup_one_page function
3 backend/access/nbtree/nbtdedup.c, _bt_dedup_pass function
4 postgresql.org/docs/14/collation.html

491

https://postgresql.org/docs/14/btree-implementation#BTREE-DEDUPLICATION.html
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/nbtree/nbtinsert.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/nbtree/nbtdedup.c;hb=REL_14_STABLE
https://postgresql.org/docs/14/collation.html

Chapter 25 B-tree

To check whether a particular index can use deduplication, you can take a look at

the allequalimage field in its metapage:

=> CREATE INDEX ON tickets(book_ref);

=> SELECT allequalimage FROM bt_metap('tickets_book_ref_idx');

allequalimage

−−−−−−−−−−−−−−−

t

(1 row)

In this case, deduplication is supported. And indeed, we can see that one of the

leaf pages contains both index entries with a single tuple �� (htid) and those with

a list of ��s (tids):

=> SELECT itemoffset, htid, left(tids::text,27) tids,

data_to_text(data) AS data

FROM bt_page_items('tickets_book_ref_idx',1)

WHERE itemoffset > 1;

itemoffset | htid | tids | data

−−−−−−−−−−−−+−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−

2 | (32965,40) | | 000004

3 | (47429,51) | | 00000F

4 | (3648,56) | {"(3648,56)","(3648,57)"} | 000010

5 | (6498,47) | | 000012

...

271 | (21492,46) | | 000890

272 | (26601,57) | {"(26601,57)","(26601,58)"} | 0008AC

273 | (25669,37) | | 0008B6

(272 rows)

Compact Storage of Inner Index Entriesv. ��

Deduplication enables accommodating more entries in leaf pages of an index. But

even though leaf pages make up the bulk of an index, data compaction performed

in inner pages to prevent extra splits is just as important, as search efficiency is

directly dependent on tree depth.

Inner index entries contain index keys, but their values are only used to deter-

mine the subtree to descend into during search. Inmulticolumn indexes, it is often

enough to take the first key attribute (or several first ones). Other attributes can

be truncated to save space in the page.

492

25.4 Operator Class

Such suffix truncation happens when a leaf page is being split and the inner page

has to accommodate a new pointer.1

In theory, we could even go one step further and keep only the meaningful part of the

attribute, for example, the first few symbols of a row that are enough to differentiate be-

tween subtrees. But it is not implemented yet: an index entry either contains the whole

attribute or excludes this attribute altogether.

For instance, here are several entries of the root page of an index built over the

tickets table on the columns containing booking references and passenger names:

=> CREATE INDEX tickets_bref_name_idx

ON tickets(book_ref, passenger_name);

=> SELECT itemoffset, ctid, data_to_text(data)

FROM bt_page_items('tickets_bref_name_idx',229)

WHERE itemoffset BETWEEN 8 AND 13;

itemoffset | ctid | data_to_text

−−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−−

8 | (1607,1) | 1A98A0

9 | (1833,2) | 1E57D1, SVETLANA MAKSIMOVA

10 | (2054,1) | 220797

11 | (2282,1) | 25DB06

12 | (2509,2) | 299FE4, YURIY AFANASEV

13 | (2736,1) | 2D62C9

(6 rows)

We can see that some index entries do not have the second attribute.

Naturally, leaf pagesmust keep all key attributes and ������� column values, if any.

Otherwise, it would be impossible to perform index-only scans. The only exception

is high keys; they can be kept partially.

25.4 Operator Class

Comparison Semantics

Apart from hashing values, the system must also know how to order values of var-

ious types, including custom ones. It is indispensable for sorting, grouping,merge

1 backend/access/nbtree/nbtinsert.c, _bt_split function

493

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/nbtree/nbtinsert.c;hb=REL_14_STABLE

Chapter 25 B-tree

joins, and some other operations. And just like in the case of hashing, comparison

operators for a particular data type are defined by an operator class.1

An operator class allows us to abstract from names (such as >, <, =) and can even

provide several ways to order values of one and the same type.

Here are themandatory comparison operators thatmust be defined in any operator

class of the btreemethod (shown for the bool_ops family):

=> SELECT amopopr::regoperator AS opfamily_operator,

amopstrategy

FROM pg_am am

JOIN pg_opfamily opf ON opfmethod = am.oid

JOIN pg_amop amop ON amopfamily = opf.oid

WHERE amname = 'btree'

AND opfname = 'bool_ops'

ORDER BY amopstrategy;

opfamily_operator | amopstrategy

−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−

<(boolean,boolean) | 1

<=(boolean,boolean) | 2

=(boolean,boolean) | 3

>=(boolean,boolean) | 4

>(boolean,boolean) | 5

(5 rows)

Each of these five comparison operators corresponds to one of the strategies,2

which defines their semantics:

� less than

� less than or equal to

� equal to

� greater than or equal to

� greater than

A �-tree operator class also includes several support functions.3 The first onemust

return 1 if its first argument is greater than the second one,−1 if it is less than the

second one, and 0 if the arguments are equal.

1 postgresql.org/docs/14/btree-behavior.html
2 postgresql.org/docs/14/xindex#XINDEX-STRATEGIES.html
3 postgresql.org/docs/14/btree-support-funcs.html

494

https://postgresql.org/docs/14/btree-behavior.html
https://postgresql.org/docs/14/xindex#XINDEX-STRATEGIES.html
https://postgresql.org/docs/14/btree-support-funcs.html

25.4 Operator Class

Other support functions are optional, but they improve performance of the access

method.

To better understand this mechanism, we can define a new data type with a non-

default collation. The documentation gives an example for complex numbers,1 but

it is written in C. Fortunately, a �-tree operator class can be implemented using

interpreted languages too, so I will take advantage of it and make an example that

is as simple as possible (even if knowingly inefficient).

Let’s define a new composite type for information units:

=> CREATE TYPE capacity_units AS ENUM (

'B', 'kB', 'MB', 'GB', 'TB', 'PB'

);

=> CREATE TYPE capacity AS (

amount integer,

unit capacity_units

);

Now create a table with a column of the new type and fill it with random values:

=> CREATE TABLE test AS

SELECT ((random()*1023)::integer, u.unit)::capacity AS cap

FROM generate_series(1,100),

unnest(enum_range(NULL::capacity_units)) AS u(unit);

By default, values of composite types are sorted in lexicographical order, which is

not the same as the natural order in this particular case:

=> SELECT * FROM test ORDER BY cap;

cap

−−−−−−−−−−−

(1,B)

(3,GB)

(4,MB)

(9,kB)

...

(1017,kB)

(1017,GB)

(1018,PB)

(1020,MB)

(600 rows)

1 postgresql.org/docs/14/xindex#XINDEX-EXAMPLE.html

495

https://postgresql.org/docs/14/xindex#XINDEX-EXAMPLE.html

Chapter 25 B-tree

Now let’s get down to creating our operator class. We will start with defining a

function that converts the volume into bytes:

=> CREATE FUNCTION capacity_to_bytes(a capacity) RETURNS numeric

AS $$

SELECT a.amount::numeric *

1024::numeric ^ (array_position(enum_range(a.unit), a.unit) - 1);

$$ LANGUAGE sql STRICT IMMUTABLE;

=> SELECT capacity_to_bytes('(1,kB)'::capacity);

capacity_to_bytes

−−−−−−−−−−−−−−−−−−−−−−−

1024.0000000000000000

(1 row)

Create a support function for the future operator class:

=> CREATE FUNCTION capacity_cmp(a capacity, b capacity)

RETURNS integer

AS $$

SELECT sign(capacity_to_bytes(a) - capacity_to_bytes(b));

$$ LANGUAGE sql STRICT IMMUTABLE;

Now it is easy to define comparison operators using this support function. I delib-

erately use peculiar names to demonstrate that they can be arbitrary:

=> CREATE FUNCTION capacity_lt(a capacity, b capacity) RETURNS boolean

AS $$

BEGIN

RETURN capacity_cmp(a,b) < 0;

END;

$$ LANGUAGE plpgsql IMMUTABLE STRICT;

=> CREATE OPERATOR #<# (

LEFTARG = capacity,

RIGHTARG = capacity,

FUNCTION = capacity_lt

);

The other four operators are defined in a similar way.

=> CREATE FUNCTION capacity_le(a capacity, b capacity) RETURNS boolean

AS $$

BEGIN

RETURN capacity_cmp(a,b) <= 0;

END;

$$ LANGUAGE plpgsql IMMUTABLE STRICT;

496

25.4 Operator Class

=> CREATE OPERATOR #<=# (

LEFTARG = capacity,

RIGHTARG = capacity,

FUNCTION = capacity_le

);

=> CREATE FUNCTION capacity_eq(a capacity, b capacity) RETURNS boolean

AS $$

BEGIN

RETURN capacity_cmp(a,b) = 0;

END;

$$ LANGUAGE plpgsql IMMUTABLE STRICT;

=> CREATE OPERATOR #=# (

LEFTARG = capacity,

RIGHTARG = capacity,

FUNCTION = capacity_eq,

MERGES -- can be used in merge joins

);

=> CREATE FUNCTION capacity_ge(a capacity, b capacity) RETURNS boolean

AS $$

BEGIN

RETURN capacity_cmp(a,b) >= 0;

END;

$$ LANGUAGE plpgsql IMMUTABLE STRICT;

=> CREATE OPERATOR #>=# (

LEFTARG = capacity,

RIGHTARG = capacity,

FUNCTION = capacity_ge

);

=> CREATE FUNCTION capacity_gt(a capacity, b capacity) RETURNS boolean

AS $$

BEGIN

RETURN capacity_cmp(a,b) > 0;

END;

$$ LANGUAGE plpgsql IMMUTABLE STRICT;

=> CREATE OPERATOR #># (

LEFTARG = capacity,

RIGHTARG = capacity,

FUNCTION = capacity_gt

);

At this stage, we can already compare capacities:

497

Chapter 25 B-tree

=> SELECT (1,'MB')::capacity #># (512, 'kB')::capacity;

?column?

−−−−−−−−−−

t

(1 row)

Once the operator class is created, sorting will also start working as expected:

=> CREATE OPERATOR CLASS capacity_ops

DEFAULT FOR TYPE capacity -- to be used by default

USING btree AS

OPERATOR 1 #<#,

OPERATOR 2 #<=#,

OPERATOR 3 #=#,

OPERATOR 4 #>=#,

OPERATOR 5 #>#,

FUNCTION 1 capacity_cmp(capacity,capacity);

=> SELECT * FROM test ORDER BY cap;

cap

−−−−−−−−−−−

(1,B)

(21,B)

(27,B)

(35,B)

(46,B)

...

(1002,PB)

(1013,PB)

(1014,PB)

(1014,PB)

(1018,PB)

(600 rows)

Our operator class is used by default when a new index is created, and this index

returns the results in the correct order:

=> CREATE INDEX ON test(cap);

=> SELECT * FROM test WHERE cap #<# (100,'B')::capacity ORDER BY cap;

cap

−−−−−−−−

(1,B)

(21,B)

(27,B)

(35,B)

498

25.4 Operator Class

(46,B)

(57,B)

(68,B)

(70,B)

(72,B)

(76,B)

(78,B)

(94,B)

(12 rows)

=> EXPLAIN (costs off) SELECT *

FROM test WHERE cap #<# (100,'B')::capacity ORDER BY cap;

QUERY PLAN

−−−

Index Only Scan using test_cap_idx on test

Index Cond: (cap #<# '(100,B)'::capacity)

(2 rows)

The ������ clause p. ���specified in the equality operator declaration enables merge

joins for this data type.

Multicolumn Indexes and Sorting

Let’s take a closer look at sorting multicolumn indexes.

First and foremost, it is very important to choose the optimal order of columns

when declaring an index: data sortingwithin pageswill beginwith the first column,

then move on to the second one, and so on. Multicolumn indexes can guarantee

efficient search only if the provided filter condition spans a continuous sequence

of columns starting from the very first one: the first column, the first two columns,

the range between the first and the third columns, etc. Other types of conditions

can only be used to filter out redundant values that have been fetched based on

other criteria.

Here is the order of index entries in the first leaf page of the index that has been

created on the tickets table and includes booking references and passenger names:

=> SELECT itemoffset, data_to_text(data)

FROM bt_page_items('tickets_bref_name_idx',1)

WHERE itemoffset > 1;

499

Chapter 25 B-tree

itemoffset | data_to_text

−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

2 | 000004, PETR MAKAROV

3 | 00000F, ANNA ANTONOVA

4 | 000010, ALEKSANDR SOKOLOV

5 | 000010, LYUDMILA BOGDANOVA

6 | 000012, TAMARA ZAYCEVA

7 | 000026, IRINA PETROVA

8 | 00002D, ALEKSANDR SMIRNOV

...

187 | 0003EF, VLADIMIR CHERNOV

188 | 00040C, ANTONINA KOROLEVA

189 | 00040C, DMITRIY FEDOROV

190 | 00041E, EGOR FEDOROV

191 | 00041E, ILYA STEPANOV

192 | 000447, VIKTOR VASILEV

193 | 00044D, NADEZHDA KULIKOVA

(192 rows)

In this case, an efficient search for tickets is only possible either by the booking

reference and the passenger name, or by the booking reference alone.

=> EXPLAIN (costs off) SELECT *

FROM tickets

WHERE book_ref = '000010';

QUERY PLAN

−−

Index Scan using tickets_book_ref_idx on tickets

Index Cond: (book_ref = '000010'::bpchar)

(2 rows)

=> EXPLAIN (costs off) SELECT *

FROM tickets

WHERE book_ref = '000010' AND passenger_name = 'LYUDMILA BOGDANOVA';

QUERY PLAN

−−−

Index Scan using tickets_bref_name_idx on tickets

Index Cond: ((book_ref = '000010'::bpchar) AND (passenger_name...

(2 rows)

But if we decide to look for a passenger name, we have to scan all the rows:

=> EXPLAIN (costs off) SELECT *

FROM tickets

WHERE passenger_name = 'LYUDMILA BOGDANOVA';

500

25.4 Operator Class

QUERY PLAN

−−−

Gather

Workers Planned: 2

−> Parallel Seq Scan on tickets

Filter: (passenger_name = 'LYUDMILA BOGDANOVA'::text)

(4 rows)

Even if the planner chooses to perform an index scan, all index entries will still

have to be traversed.1 Unfortunately, the plan will not show that the condition is

actually used only for filtering the result.

If the first column does not have toomanydistinct values v1, v2, … , vn, it could be beneficial
to perform several passes over the corresponding subtrees, virtually replacing a single

search by condition “col2 = value” with a series of searches by the following conditions:

col1 = v1 ��� col2 = value

col1 = v2 ��� col2 = value

⋯
col1 = vn ��� col2 = value

This type of an index access is called a Skip Scan, but it is not implemented yet.2

And vice versa, if an index is created on passenger names and booking numbers, it

will better suit queries by either the passenger name alone or both the passenger

name and booking reference:

=> CREATE INDEX tickets_name_bref_idx

ON tickets(passenger_name, book_ref);

=> SELECT itemoffset, data_to_text(data)

FROM bt_page_items('tickets_name_bref_idx',1)

WHERE itemoffset > 1;

itemoffset | data_to_text

−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

2 | ADELINA ABRAMOVA, E37EDB

3 | ADELINA AFANASEVA, 1133B7

4 | ADELINA AFANASEVA, 4F3370

5 | ADELINA AKIMOVA, 7D2881

6 | ADELINA ALEKSANDROVA, 3C3ADD

7 | ADELINA ALEKSANDROVA, 52801E

...

1 backend/access/nbtree/nbtsearch.c, _bt_first function
2 commitfest.postgresql.org/34/1741

501

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/nbtree/nbtsearch.c;hb=REL_14_STABLE
https://commitfest.postgresql.org/34/1741

Chapter 25 B-tree

185 | ADELINA LEBEDEVA, 0A00E3

186 | ADELINA LEBEDEVA, DAEADE

187 | ADELINA LEBEDEVA, DFD7E5

188 | ADELINA LOGINOVA, 8022F3

189 | ADELINA LOGINOVA, EE67B9

190 | ADELINA LUKYANOVA, 292786

191 | ADELINA LUKYANOVA, 54D3F9

(190 rows)

=> EXPLAIN (costs off) SELECT * FROM tickets

WHERE passenger_name = 'LYUDMILA BOGDANOVA';

QUERY PLAN

−−−

Bitmap Heap Scan on tickets

Recheck Cond: (passenger_name = 'LYUDMILA BOGDANOVA'::text)

−> Bitmap Index Scan on tickets_name_bref_idx

Index Cond: (passenger_name = 'LYUDMILA BOGDANOVA'::text)

(4 rows)

In addition to the column order, you should also pay attention to the sort order

when creating a new index. By default, values are sorted in ascending order (���),

but you can reverse it (����) if required. It does not matter much if an index is built

over a single column, as it can be scanned in any direction. But in a multicolumn

index the order becomes important.

Our newly created index can be used to retrieve the data sorted by both columns

either in ascending or in descending order:

=> EXPLAIN (costs off) SELECT *

FROM tickets

ORDER BY passenger_name, book_ref;

QUERY PLAN

−−−

Index Scan using tickets_name_bref_idx on tickets

(1 row)

=> EXPLAIN (costs off) SELECT *

FROM tickets ORDER BY passenger_name DESC, book_ref DESC;

QUERY PLAN

−−

Index Scan Backward using tickets_name_bref_idx on tickets

(1 row)

But this index cannot return the data right away if it needs to be sorted in ascending

order by one column and in descending order by the other column at the same time.

502

25.4 Operator Class

In this case, the index provides partially ordered data that has to be further sorted p. ���

by the second attribute:

=> EXPLAIN (costs off) SELECT *

FROM tickets ORDER BY passenger_name ASC, book_ref DESC;

QUERY PLAN

−−

Incremental Sort

Sort Key: passenger_name, book_ref DESC

Presorted Key: passenger_name

−> Index Scan using tickets_name_bref_idx on tickets

(4 rows)

The location of ���� values also affects the ability to use index for sorting. By

default, ���� values are considered “greater” than regular values for the purpose

of sorting, that is, they are located in the right side of the tree if the sort order is

ascending and in the left side if the sort order is descending. The location of ����

values can be changed using the ����� ���� and ����� ����� clauses.

In the next example, the index does not satisfy the ����� �� clause, so the result

has to be sorted:

=> EXPLAIN (costs off) SELECT *

FROM tickets ORDER BY passenger_name NULLS FIRST, book_ref DESC;

QUERY PLAN

−−−

Gather Merge

Workers Planned: 2

−> Sort

Sort Key: passenger_name NULLS FIRST, book_ref DESC

−> Parallel Seq Scan on tickets

(5 rows)

But if we create an index that follows the desired order, it will be used:

=> CREATE INDEX tickets_name_bref_idx2

ON tickets(passenger_name NULLS FIRST, book_ref DESC);

=> EXPLAIN (costs off) SELECT *

FROM tickets ORDER BY passenger_name NULLS FIRST, book_ref DESC;

QUERY PLAN

−−

Index Scan using tickets_name_bref_idx2 on tickets

(1 row)

503

Chapter 25 B-tree

25.5 Properties

Let’s take a look at the interface properties of �-trees.p. ���

Access Method Properties

=> SELECT a.amname, p.name, pg_indexam_has_property(a.oid, p.name)

FROM pg_am a, unnest(array[

'can_order', 'can_unique', 'can_multi_col',

'can_exclude', 'can_include'

]) p(name)

WHERE a.amname = 'btree';

amname | name | pg_indexam_has_property

−−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−

btree | can_order | t

btree | can_unique | t

btree | can_multi_col | t

btree | can_exclude | t

btree | can_include | t

(5 rows)

B-trees can order data and ensure its uniqueness. It is the only access method with

such properties.

Many accessmethods support multicolumn indexes, but since values in �-trees are

ordered, you have to pay close attention to the order of columns in an index.

Formally, exclusion constraints are supported, but they are limited to equality

conditions, which makes them analogous to unique constraints. It is much more

preferable to use a full-fledged unique constraint instead.

B-tree indexes can also be extended with additional ������� columns that do not

participate in search.

Index-Level Properties

=> SELECT p.name, pg_index_has_property('flights_pkey', p.name)

FROM unnest(array[

'clusterable', 'index_scan', 'bitmap_scan', 'backward_scan'

]) p(name);

504

25.5 Properties

name | pg_index_has_property

−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−

clusterable | t

index_scan | t

bitmap_scan | t

backward_scan | t

(4 rows)

B-tree indexes can be used for clusterization.

Both index scans and bitmap scans are supported. Since leaf pages are bound into

a bidirectional list, an index can also be traversed backwards, which results in the

reverse sort order:

=> EXPLAIN (costs off) SELECT *

FROM bookings ORDER BY book_ref DESC;

QUERY PLAN

−−−

Index Scan Backward using bookings_pkey on bookings

(1 row)

Column-Level Properties

=> SELECT p.name,

pg_index_column_has_property('flights_pkey', 1, p.name)

FROM unnest(array[

'asc', 'desc', 'nulls_first', 'nulls_last', 'orderable',

'distance_orderable', 'returnable', 'search_array', 'search_nulls'

]) p(name);

name | pg_index_column_has_property

−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

asc | t

desc | f

nulls_first | f

nulls_last | t

orderable | t

distance_orderable | f

returnable | t

search_array | t

search_nulls | t

(9 rows)

505

Chapter 25 B-tree

The O�������� property indicates that the data stored in a �-tree is ordered, while

the first four properties (A�� and D���, N���� F���� and N���� L���) define the ac-

tual order in a particular column. In this example, column values are sorted in

ascending order with ���� values listed last.

The S����� N���� property indicates whether ���� values can be searched.

B-trees do not support ordering operators (D������� O��������), even though it

has been attempted to implement them.1

B-trees support searching formultiple elements in an array (the S�����A���� prop-

erty) and can return the resulting data without heap access (R���������).

1 commitfest.postgresql.org/27/1804

506

https://commitfest.postgresql.org/27/1804

26
GiST

26.1 Overview

Gi�� (Generalized Search Tree)1 is an access method that is virtually a generaliza-

tion of a balanced search tree for data types that support relative positioning of

values. B-tree applicability is limited to ordinal types that allow comparison oper-

ations (but the support provided for such types is extremely efficient). As for �i��,

its operator class allows defining arbitrary criteria for data distribution in the tree.

A �i�� index can accommodate an �-tree for spatial data, an ��-tree for sets, and

a signature tree for any data types (including texts and images).

Thanks to extensibility, you can create a new access method in Postgre��� from

scratch by implementing the interface of the indexing engine. However, apart from

designing the indexing logic, you have to define the page layout, an efficient lock-

ing strategy, and ��� support. It all takes strong programming skills and much

implementation efforts. Gi�� simplifies this task, addressing all the low-level tech-

nicalities and providing the basis for the search algorithm. To use the �i�� method

with a new data type, you just need to add a new operator class that includes a

dozen support functions. Unlike the trivial operator class provided for �-trees, such

a class contains most of the indexing logic. Gi�� can be regarded as a framework

for building new access methods in this respect.

Speaking in the most general terms, each entry that belongs to a leaf node (a leaf

entry) contains a predicate (a logical condition) and a heap tuple ��. The index key

must satisfy the predicate; it does not matter whether the key itself is a part of this

entry or not.

1 postgresql.org/docs/14/gist.html

backend/access/gist/README

507

https://postgresql.org/docs/14/gist.html
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/gist/README;hb=REL_14_STABLE

Chapter 26 GiST

Each entry in an inner leaf (an inner entry) also contains a predicate and a reference

to a child node; all the indexed data of the child subtreemust satisfy this predicate.

In other words, the predicate of an inner entry is the union of all the predicates

of its child entries. This important property of �i�� serves the purpose of simple

ranking used by �-trees.

Gi�� tree search relies on the consistency function, which is one of the support func-

tions defined by the operator class.

The consistency function is called on an index entry to determine whether the

predicate of this entry is “consistent” with the search condition (“indexed-column

operator expression”). For an inner entry, it shows whether we have to descend into

the corresponding subtree; for a leaf entry, it checks whether its index key satisfies

the condition.

The search starts at the root node,1 which is typical of a tree search. The consis-

tency function determines which child nodes must be traversed and which can be

skipped. Then this procedure is repeated for each of the found child nodes; unlike

a �-tree, a �i�� index may have several such nodes. Leaf node entries selected by

the consistency function are returned as results.

The search is always depth-first: the algorithm tries to get to a leaf page as soon

as possible. Therefore, it can start returning results right away, which makes a lot

of sense if the user needs to get only the first few rows.

To insert a new value into a �i�� tree, it is impossible to use the consistency func-

tion, since we need to choose exactly one node to descend to.2 This node must

have the minimal insert cost; it is determined by the penalty function of the opera-

tor class.

Just like in the case of a �-tree, the selected node may turn out to have no free

space, which leads to a split.3 This operation needs two more functions. One of

them distributes the entries between the old and new nodes; the other forms the

union of the two predicates to update the predicate of the parent node.

1 backend/access/gist/gistget.c, gistgettuple function
2 backend/access/gist/gistutil.c, gistchoose function
3 backend/access/gist/gistsplit.c, gistSplitByKey function

508

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/gist/gistget.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/gist/gistutil.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/gist/gistsplit.c;hb=REL_14_STABLE

26.2 R-Trees for Points

As new values are being added, the existing predicates expand, and they are typ-

ically narrowed down only if the page is split or the whole index is rebuilt. Thus,

frequent updates of a �i�� index can lead to its performance degradation.

Since all these theoretical discussions may seem too vague, and the exact logic

mostly depends on a particular operator class anyway, I will provide several specific

examples.

26.2 R-Trees for Points

The first example deals with indexing points (or other geometries) on a plane.

A regular �-tree cannot be used for this data type, as there are no comparison op-

erators defined for points. Clearly, we could have implemented such operators on

our own, but geometries need index support for totally different operations. I will

go over just two of them: search for objects contained within a particular area and

nearest neighbor search.

An �-tree draws rectangles on a plane; taken together, they must cover all the in-

dexed points. An index entry stores the bounding box, and the predicate can be

defined as follows: the point lies within this bounding box.

The root of an �-tree contains several large rectangles (that may also overlap).

Child nodes hold smaller rectangles that fit their parent nodes; together, they cover

all the underlying points.

Leaf nodes should contain the indexed points themselves, but �i�� requires that

all entries have the same data type; therefore, leaf entries are also represented by

rectangles, which are simply reduced to points.

To better visualize this structure, let’s take a look at three levels of an �-tree built

over airport coordinates. For this example, I have extended the airports table of the

demo database up to five thousand rows.1 I have also reduced the fillfactor 90value

to make the tree deeper; the default value would have given us a single-level tree.

1 You can download the corresponding file at edu.postgrespro.ru/internals-14/extra_airports.copy

(I have used the data available at the openflights.org website).

509

https://edu.postgrespro.ru/internals-14/extra_airports.copy
https://openflights.org

Chapter 26 GiST

=> CREATE TABLE airports_big AS

SELECT * FROM airports_data;

=> COPY airports_big FROM

'/home/student/internals/airports/extra_airports.copy';

=> CREATE INDEX airports_gist_idx ON airports_big

USING gist(coordinates) WITH (fillfactor=10);

At the upper level, all the points are included into several (partially overlapping)

bounding boxes:

At the next level, big rectangles are split into smaller ones:

510

26.2 R-Trees for Points

Finally, at the inner level of the tree each bounding box contains as many points

as a single page can accommodate:

This index uses the point_ops operator class, which is the only one available for

points.

Rectangles and any other geometries can be indexed in the same manner, but in-

stead of the object itself the index has to store its bounding box.

Page Layout

You can study v. ���i�� pages using the pageinspect extension.

Unlike �-tree indexes, �i�� has no metapage, and the zero page is always the root

of the tree. If the root page gets split, the old root is moved into a separate page,

and the new root takes its place.

Here is the contents of the root page:

=> SELECT ctid, keys

FROM gist_page_items(

get_raw_page('airports_gist_idx', 0), 'airports_gist_idx'

);

511

Chapter 26 GiST

ctid | keys

−−−−−−−−−−−−−+−−−

(207,65535) | (coordinates)=((50.84510040283203,78.246101379395))

(400,65535) | (coordinates)=((179.951004028,73.51780700683594))

(206,65535) | (coordinates)=((−1.5908199548721313,40.63980103))

(466,65535) | (coordinates)=((−1.0334999561309814,82.51779937740001))

(4 rows)

These four rows correspond to the four rectangles of the upper level shown in the

first picture. Unfortunately, the keys are displayed here as points (which makes

sense for leaf pages), not as rectangles (which would be more logical for inner

pages). But we can always get raw data and interpret it on our own.

To extract more detailed information, you can use the gevel extension,1 which is not in-

cluded into the standard Postgre��� distribution.

Operator Class

The following query returns the list of support functions that implement the logic

of search and insert operations for trees:2

=> SELECT amprocnum, amproc::regproc

FROM pg_am am

JOIN pg_opclass opc ON opcmethod = am.oid

JOIN pg_amproc amop ON amprocfamily = opcfamily

WHERE amname = 'gist'

AND opcname = 'point_ops'

ORDER BY amprocnum;

amprocnum | amproc

−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−

1 | gist_point_consistent

2 | gist_box_union

3 | gist_point_compress

5 | gist_box_penalty

6 | gist_box_picksplit

7 | gist_box_same

8 | gist_point_distance

9 | gist_point_fetch

11 | gist_point_sortsupport

(9 rows)

1 sigaev.ru/git/gitweb.cgi?p=gevel.git
2 postgresql.org/docs/14/gist-extensibility.html

512

http://sigaev.ru/git/gitweb.cgi?p=gevel.git
https://postgresql.org/docs/14/gist-extensibility.html

26.2 R-Trees for Points

I have already listed the mandatory functions above:

� consistency function used to traverse the tree during search

� union function that merges rectangles

� penalty function used to choose the subtree to descend to when inserting an

entry

� picksplit function that distributes entries between new pages after a page split

� same function that checks two keys for equality

The point_ops operator class includes the following operators:

=> SELECT amopopr::regoperator, amopstrategy AS st, oprcode::regproc,

left(obj_description(opr.oid, 'pg_operator'), 19) description

FROM pg_am am

JOIN pg_opclass opc ON opcmethod = am.oid

JOIN pg_amop amop ON amopfamily = opcfamily

JOIN pg_operator opr ON opr.oid = amopopr

WHERE amname = 'gist'

AND opcname = 'point_ops'

ORDER BY amopstrategy;

amopopr | st | oprcode | description

−−−−−−−−−−−−−−−−−−−+−−−−+−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−

<<(point,point) | 1 | point_left | is left of

>>(point,point) | 5 | point_right | is right of

~=(point,point) | 6 | point_eq | same as

<<|(point,point) | 10 | point_below | is below

|>>(point,point) | 11 | point_above | is above

<−>(point,point) | 15 | point_distance | distance between

<@(point,box) | 28 | on_pb | point inside box

<^(point,point) | 29 | point_below | deprecated, use <<|

>^(point,point) | 30 | point_above | deprecated, use |>>

<@(point,polygon) | 48 | pt_contained_poly | is contained by

<@(point,circle) | 68 | pt_contained_circle | is contained by

(11 rows)

Operator names donot usually tell usmuch about operator semantics, so this query

also displays the names of the underlying functions and their descriptions. One

way or another, all the operators deal with relative positioning of geometries (left

of, right of, above, below, contains, is contained) and the distance between them.

As compared to �-trees, �i�� offers more strategies. Some of the strategy numbers

are common to several types of indexes,1 while others are calculated by formulas

1 include/access/stratnum.h

513

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/include/access/stratnum.h;hb=REL_14_STABLE

Chapter 26 GiST

(for example, ��, ��, and �� virtually represent one and the same strategy: is con-

tained for rectangles, polygons, and circles). Besides, �i�� supports some obsolete

operator names (<<| and |>>).

Operator classes may implement only some of the available strategies. For ex-

ample, the contains strategy is not supported by the operator class for points, but

it is available in classes defined for geometries with measurable area (box_ops,

poly_ops, and circle_ops).

Search for Contained Elements

A typical query that can be sped up by an index returns all points of the specified

area.

For example, let’s find all the airports located within one degree from the centre of

Moscow:

=> SELECT airport_code, airport_name->>'en'

FROM airports_big

WHERE coordinates <@ '<(37.622513,55.753220),1.0>'::circle;

airport_code | ?column?

−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

SVO | Sheremetyevo International Airport

VKO | Vnukovo International Airport

DME | Domodedovo International Airport

BKA | Bykovo Airport

ZIA | Zhukovsky International Airport

CKL | Chkalovskiy Air Base

OSF | Ostafyevo International Airport

(7 rows)

=> EXPLAIN (costs off) SELECT airport_code

FROM airports_big

WHERE coordinates <@ '<(37.622513,55.753220),1.0>'::circle;

QUERY PLAN

−−−

Bitmap Heap Scan on airports_big

Recheck Cond: (coordinates <@ '<(37.622513,55.75322),1>'::circle)

−> Bitmap Index Scan on airports_gist_idx

Index Cond: (coordinates <@ '<(37.622513,55.75322),1>'::ci...

(4 rows)

514

26.2 R-Trees for Points

We can take a closer look at this operator using a trivial example shown in the

figure below:

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

If bounding boxes are selected this way, the index structure will be as follows:

0,0–3,4 5,3–9,90,0–3,4 5,3–9,9

0,0–3,2 0,3–3,40,0–3,2 0,3–3,4 5,3–8,5 6,6–9,95,3–8,5 6,6–9,9

0,0 1,2 3,10,0 1,2 3,1 0,4 3,30,4 3,3 5,3 8,55,3 8,5 6,6 8,9 9,76,6 8,9 9,7

The contains operator <@ determines whether a particular point is located within

the specified rectangle. The consistency function for this operator1 returns “yes”

if the rectangle of the index entry has any common points with this rectangle. It

means that for leaf node entries, which store rectangles reduced to points, this

function determines whether the point is contained within the specified rectangle.

1 backend/access/gist/gistproc.c, gist_point_consistent function

515

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/gist/gistproc.c;hb=REL_14_STABLE

Chapter 26 GiST

For example, let’s find the inner points of rectangle (�,�)–(�,�), which is hatched in

the figure below:

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

0,0–3,4 5,3–9,90,0–3,4 5,3–9,9

0,0–3,2 0,3–3,40,0–3,2 0,3–3,4 5,3–8,5 6,6–9,95,3–8,5 6,6–9,9

0,0 1,2 3,10,0 1,2 3,1 0,4 3,30,4 3,3 5,3 8,55,3 8,5 6,6 8,9 9,76,6 8,9 9,7

The search starts at the root node. The bounding box overlaps with (�,�)–(�,�), but

does not overlap with (�,�)–(�,�). It means that we do not have to descend into the

second subtree.

At the next level, the bounding box overlaps with (�,�)–(�,�) and touches (�,�)–(�,�),

so we have to check both subtrees.

Once we get to leaf nodes, we just have to go through all the points that they con-

tain and return those that satisfy the consistency function.

A �-tree search always selects exactly one child node. A �i�� search, however,may

have to scan several subtrees, especially if their bounding boxes overlap.

516

26.2 R-Trees for Points

Nearest Neighbor Search

Most of the operators supported by indexes (such as = or <@ shown in the previous

example) are typically called search operators, as they define search conditions in

queries. Such operators are predicates, that is, they return a logical value.

But there is also a group of ordering operators, which return the distance between

arguments. Such operators are used in the ����� �� clause and are typically sup-

ported by indexes that have the D������� O�������� p. ���property, which enables you

to quickly find the specified number of nearest neighbors. This type of search is

known as k-��, or k-nearest neighbor search.

For example, we can find �� airports closest to Kostroma:

=> SELECT airport_code, airport_name->>'en'

FROM airports_big

ORDER BY coordinates <-> '(40.926780,57.767943)'::point

LIMIT 10;

airport_code | ?column?

−−−−−−−−−−−−−−+−−

KMW | Kostroma Sokerkino Airport

IAR | Tunoshna Airport

IWA | Ivanovo South Airport

VGD | Vologda Airport

RYB | Staroselye Airport

GOJ | Nizhny Novgorod Strigino International Airport

CEE | Cherepovets Airport

CKL | Chkalovskiy Air Base

ZIA | Zhukovsky International Airport

BKA | Bykovo Airport

(10 rows)

=> EXPLAIN (costs off) SELECT airport_code

FROM airports_big

ORDER BY coordinates <-> '(40.926780,57.767943)'::point

LIMIT 5;

QUERY PLAN

−−−

Limit

−> Index Scan using airports_gist_idx on airports_big

Order By: (coordinates <−> '(40.92678,57.767943)'::point)

(3 rows)

Since an index scan returns the results one by one and can be stopped any time,

several first values can be found very quickly.

517

Chapter 26 GiST

It would be very hard to achieve efficient search without index support. We would have

to find all the points that appear in a particular area and then gradually expand this area

until the requested number of results is returned. It would require several index scans, not

to mention the problem of choosing the size of the original area and its increments.

You can see the operator type in the system catalog (“s” stands for search, “o” de-

notes ordering operators):

=> SELECT amopopr::regoperator, amoppurpose, amopstrategy

FROM pg_am am

JOIN pg_opclass opc ON opcmethod = am.oid

JOIN pg_amop amop ON amopfamily = opcfamily

WHERE amname = 'gist'

AND opcname = 'point_ops'

ORDER BY amopstrategy;

amopopr | amoppurpose | amopstrategy

−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−+−−−−−−−−−−−−−−

<<(point,point) | s | 1

>>(point,point) | s | 5

~=(point,point) | s | 6

<<|(point,point) | s | 10

|>>(point,point) | s | 11

<−>(point,point) | o | 15

<@(point,box) | s | 28

<^(point,point) | s | 29

>^(point,point) | s | 30

<@(point,polygon) | s | 48

<@(point,circle) | s | 68

(11 rows)

To support such queries, an operator class must define an additional support func-

tion: it is the distance function, which is called on the index entry to calculate the

distance from the value stored in this entry to some other value.

For a leaf element representing an indexed value, this function must return the

distance to this value. In the case of points,1 it is a regular Euclidean distance,

which equals √(x2 − x1)2 + (y2 − y1)2.

For an inner element, the function must return the minimal of all the possible dis-

tances from its child leaf elements. Since it is quite costly to scan all the child

entries, the function can optimistically underestimate the distance (sacrificing

1 backend/utils/adt/geo_ops.c, point_distance function

518

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/utils/adt/geo_ops.c;hb=REL_14_STABLE

26.2 R-Trees for Points

efficiency), but it must never return a bigger value—it would compromise search

correctness.

Therefore, for an inner element represented by a bounding box, the distance to the

point is understood in the regular mathematical sense: it is either the minimal

distance between the point and the rectangle or zero if the point is inside the rect-

angle.1 This value can be easily calculated without traversing all the child points

of the rectangle, and it is guaranteed to be not greater than the distance to any of

these points.

Let’s consider the algorithm of searching for three nearest neighbors of point (�,�):

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

The search starts at the root node, which holds two bounding boxes. The distance

from the specified point to rectangle (�,�)–(�,�) is taken as the distance to the rect-

angle’s corner (�,�), which equals �.�. The distance to (�,�)–(�,�) is �.�. (I am going

to round all the values here to the first decimal place; such accuracy will be enough

for this example.)

Child nodes get traversed in the order of distance increase. Thus, we first descend

into the right child node, which contains two rectangles: (�,�)–(�,�) and (�,�)–(�,�).

The distance to the first one is �.�; the distance to the second one is �.�.

Once again, we choose the right subtree and get into the leaf node that contains

three points: (�,�) at the distance of �.�, (�,�) at the distance of �.�, and (�,�) at the

distance of �.�.

1 backend/utils/adt/geo_ops.c, box_closest_point function

519

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/utils/adt/geo_ops.c;hb=REL_14_STABLE

Chapter 26 GiST

0,0–3,4 5,3–9,90,0–3,4 5,3–9,9

0,0–3,2 0,3–3,40,0–3,2 0,3–3,4 5,3–8,5 6,6–9,95,3–8,5 6,6–9,9

0,0 1,2 3,10,0 1,2 3,1 0,4 3,30,4 3,3 5,3 8,55,3 8,5 6,6 8,9 9,76,6 8,9 9,7

5.0 0.0

3.0 0.0

2.0 2.2 3.2

Thus, we have received the first two points: (�,�) and (�,�). But the distance to the

third point of this node is greater than the distance to rectangle (�,�)–(�,�).

So nowwe have to descend into the left child node,which contains two points. The

distance to point (�,�) is �.�,while the distance to (�,�) is �.�. It turns out that point

(�,�) in the previous child node is closer to point (�,�) than any of the nodes of the

left subtree, so we can return it as the third result.

0,0–3,4 5,3–9,90,0–3,4 5,3–9,9

0,0–3,2 0,3–3,40,0–3,2 0,3–3,4 5,3–8,5 6,6–9,95,3–8,5 6,6–9,9

0,0 1,2 3,10,0 1,2 3,1 0,4 3,30,4 3,3 5,3 8,55,3 8,5 6,6 8,9 9,76,6 8,9 9,7

5.0 0.0

3.0 0.0

2.0 2.2 3.25.1 3.6

520

26.2 R-Trees for Points

This example illustrates the requirements that must be satisfied by the distance

function for inner entries. Because of the reduced distance (�.� instead of �.�)

to rectangle (�,�)–(�,�), an extra node had to be scanned, so search efficiency has

declined; however, the algorithm itself remained correct.

Insertion

When a new key is getting inserted into an �-tree, the node to be used for this

key is determined by the penalty function: the size of the bounding box must be

increased as little as possible.1

For example, point (�,�) will be added to rectangle (�,�)–(�,�) because its area will

increase by only � units, while rectangle (�,�)–(�,�) would have to be increased by

�� units. At the next (leaf) level, the point will be added to rectangle (�,�)–(�,�),

following the same logic.

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

Assuming that a page holds three elements at the most, it has to be split in two,

and the elements have to be distributed between the new pages. In this example,

the result seems obvious, but in the general case the data distribution task is not

1 backend/access/gist/gistproc.c, gist_box_penalty function

521

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/gist/gistproc.c;hb=REL_14_STABLE

Chapter 26 GiST

so trivial. First and foremost, the picksplit function attempts to minimize overlaps

between bounding boxes, aiming at getting smaller rectangles and uniform distri-

bution of points between pages.1

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

Exclusion Constraints

Gi�� indexes can also be used in exclusion constraints.

An exclusion constraint guarantees that the specified fields of any two heap tuples

do not match each other in the sense of some operator. The following conditions

must be satisfied:

• The exclusion constraint must be supported by the indexing method (the C��

E������ property).

• The operator must belong to the operator class of this indexing method.

• The operator must be commutative, that is, the condition “a operator b =
b operator a” must be true.

For the hash and btree accessmethods considered above, the only suitable operator

is equal to. It virtually turns an exclusion constraintp. ��� into a unique one,which is not

particularly useful.

1 backend/access/gist/gistproc.c, gist_box_picksplit function

522

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/gist/gistproc.c;hb=REL_14_STABLE

26.2 R-Trees for Points

The gistmethod has two more applicable strategies:

• overlapping: the&& operator

• adjacency: the -|- operator (defined for intervals)

To try it out, let’s create a constraint that forbids placing airports too close to each

other. This condition can be formulated as follows: circles of a particular radius

with centers lying at the airports’ coordinates must not overlap:

=> ALTER TABLE airports_data ADD EXCLUDE

USING gist (circle(coordinates,0.2) WITH &&);

=> INSERT INTO airports_data(

airport_code, airport_name, city, coordinates, timezone

) VALUES (

'ZIA', '{}', '{"en": "Moscow"}', point(38.1517, 55.5533),

'Europe/Moscow'

);

ERROR: conflicting key value violates exclusion constraint

"airports_data_circle_excl"

DETAIL: Key (circle(coordinates, 0.2::double

precision))=(<(38.1517,55.5533),0.2>) conflicts with existing key

(circle(coordinates, 0.2::double

precision))=(<(37.90629959106445,55.40879821777344),0.2>).

When an exclusion constraint is defined, an index to enforce it is added automati-

cally. Here it is a �i�� index built over an expression.

Let’s take a look at a more complex example. Suppose we need to allow close prox-

imity of airports, but only if they belong to the same city. A possible solution is to

define a new integrity constraint that can be formulated as follows: it is forbidden

to have pairs of rows with intersections (&&) of circles if their centers lie at the

airports’ coordinates and the corresponding cities have different names (!=).

An attempt to create such a constraint results in an error because there is no op-

erator class for the text data type:

=> ALTER TABLE airports_data

DROP CONSTRAINT airports_data_circle_excl; -- delete old data

=> ALTER TABLE airports_data ADD EXCLUDE USING gist (

circle(coordinates,0.2) WITH &&,

(city->>'en') WITH !=

);

523

Chapter 26 GiST

ERROR: data type text has no default operator class for access

method "gist"

HINT: You must specify an operator class for the index or define a

default operator class for the data type.

However, �i�� does provide strategies like strictly left of, strictly right of, and same,

which can also be applied to regular ordinal data types, such as numbers or text

strings. The btree_gist extension is specifically intended to implement �i�� support

for operations that are typically used with �-trees:

=> CREATE EXTENSION btree_gist;

=> ALTER TABLE airports_data ADD EXCLUDE USING gist (

circle(coordinates,0.2) WITH &&,

(city->>'en') WITH !=

);

ALTER TABLE

The constraint is created. Now we cannot add Zhukovsky airport belonging to a

town with the same name because Moscow airports are too close:

=> INSERT INTO airports_data(

airport_code, airport_name, city, coordinates, timezone

) VALUES (

'ZIA', '{}', '{"en": "Zhukovsky"}', point(38.1517, 55.5533),

'Europe/Moscow'

);

ERROR: conflicting key value violates exclusion constraint

"airports_data_circle_expr_excl"

DETAIL: Key (circle(coordinates, 0.2::double precision), (city −>>

'en'::text))=(<(38.1517,55.5533),0.2>, Zhukovsky) conflicts with

existing key (circle(coordinates, 0.2::double precision), (city −>>

'en'::text))=(<(37.90629959106445,55.40879821777344),0.2>, Moscow).

But we can do it if we specify Moscow as this airport’s city:

=> INSERT INTO airports_data(

airport_code, airport_name, city, coordinates, timezone

) VALUES (

'ZIA', '{}', '{"en": "Moscow"}', point(38.1517, 55.5533),

'Europe/Moscow'

);

INSERT 0 1

524

26.2 R-Trees for Points

It is important to remember that even though GiST supports greater than, less than,

and equal to operations, �-trees are much more efficient in this respect, especially

when accessing a range of values. So it makes sense to use the trick with the

btree_gist extension shown above only if the �i�� index is really needed for other

legitimate reasons.

Properties

Access method properties. Here are the properties of the gistmethod:

=> SELECT a.amname, p.name, pg_indexam_has_property(a.oid, p.name)

FROM pg_am a, unnest(array[

'can_order', 'can_unique', 'can_multi_col',

'can_exclude', 'can_include'

]) p(name)

WHERE a.amname = 'gist';

amname | name | pg_indexam_has_property

−−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−

gist | can_order | f

gist | can_unique | f

gist | can_multi_col | t

gist | can_exclude | t

gist | can_include | t

(5 rows)

Unique constraints and sorting are not supported.

A �i�� index can be created v. ��with additional ������� columns.

Aswe know,we can build an index over several columns, aswell as use it in integrity

constraints.

Index-level properties. These properties are defined at the index level:

=> SELECT p.name, pg_index_has_property('airports_gist_idx', p.name)

FROM unnest(array[

'clusterable', 'index_scan', 'bitmap_scan', 'backward_scan'

]) p(name);

525

Chapter 26 GiST

name | pg_index_has_property

−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−

clusterable | t

index_scan | t

bitmap_scan | t

backward_scan | f

(4 rows)

A �i�� index can be used for clusterization.

As for data retrieval methods, both regular (row-by-row) index scans and bitmap

scans are supported. However, backward scanning of �i�� indexes is not allowed.

Column-level properties. Most of the column properties are defined at the access

method level, and they remain the same:

=> SELECT p.name,

pg_index_column_has_property('airports_gist_idx', 1, p.name)

FROM unnest(array[

'orderable', 'search_array', 'search_nulls'

]) p(name);

name | pg_index_column_has_property

−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

orderable | f

search_array | f

search_nulls | t

(3 rows)

All sort-related properties are disabled.

N��� values are allowed, but �i�� is not really efficient at handling them. It is

assumed that a ���� value does not increase the bounding box; such values get

inserted into random subtrees, so they have to be searched for in the whole tree.

However, a couple of column-level properties do depend on the particular operator

class:

=> SELECT p.name,

pg_index_column_has_property('airports_gist_idx', 1, p.name)

FROM unnest(array[

'returnable', 'distance_orderable'

]) p(name);

526

26.3 RD-Trees for Full-Text Search

name | pg_index_column_has_property

−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

returnable | t

distance_orderable | t

(2 rows)

Index-only scans are allowed, since leaf nodes keep full index keys.

As we have seen above, this operator class provides the distance operator for near-

est neighbor search. The distance to a ���� value is considered to be ����; such

values are returned last (similar to the ����� ���� clause in �-trees).

However, there is no distance operator for range types (which represent segments,

that is, linear geometries rather than areal ones), so this property is different for

an index built for such types:

=> CREATE TABLE reservations(during tsrange);

=> CREATE INDEX ON reservations USING gist(during);

=> SELECT p.name,

pg_index_column_has_property('reservations_during_idx', 1, p.name)

FROM unnest(array[

'returnable', 'distance_orderable'

]) p(name);

name | pg_index_column_has_property

−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

returnable | t

distance_orderable | f

(2 rows)

26.3 RD-Trees for Full-Text Search

About Full-Text Search

The objective of full-text search1 is to select those documents from the provided

set that match the search query.

1 postgresql.org/docs/14/textsearch.html

527

https://postgresql.org/docs/14/textsearch.html

Chapter 26 GiST

To be searched, the document is cast to the tsvector type, which contains lexemes

and their positions in the document. Lexemes are words converted into a format

that is suitable for search. By default, all words are normalized to lowercase, and

their endings are cut off:

=> SET default_text_search_config = english;

=> SELECT to_tsvector(

'No one can tell me, nobody knows, ' ||

'Where the wind comes from, where the wind goes.'

);

to_tsvector

−−

'come':11 'goe':16 'know':7 'nobodi':6 'one':2 'tell':4 'wind':10,15

(1 row)

The so-called stopwords (like “the”or “from”) are filtered out: they are assumed to

occur too often for the search to return anymeaningful results for them. Naturally,

all these transformations are configurable.

A search query is represented by another type: tsquery. Any query includes one or

more lexemes bound by logical connectives: & (���), | (��), ! (���). You can also

use parentheses to define operator precedence.

=> SELECT to_tsquery('wind & (comes | goes)');

to_tsquery

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

'wind' & ('come' | 'goe')

(1 row)

The only operator used for full-text search is the match operator @@:

=> SELECT amopopr::regoperator, oprcode::regproc, amopstrategy

FROM pg_am am

JOIN pg_opclass opc ON opcmethod = am.oid

JOIN pg_amop amop ON amopfamily = opcfamily

JOIN pg_operator opr ON opr.oid = amopopr

WHERE amname = 'gist'

AND opcname = 'tsvector_ops'

ORDER BY amopstrategy;

amopopr | oprcode | amopstrategy

−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−+−−−−−−−−−−−−−−

@@(tsvector,tsquery) | ts_match_vq | 1

(1 row)

528

26.3 RD-Trees for Full-Text Search

This operator determines whether the document satisfies the query. Here is an

example:

=> SELECT to_tsvector('Where the wind comes from, where the wind goes')

@@ to_tsquery('wind & coming');

?column?

−−−−−−−−−−

t

(1 row)

It is by nomeans an exhaustive p. ���description of full-text search, but this information

should be sufficient for understanding indexing fundamentals.

Indexing tsvector Data

To work fast, full-text search has to be supported by an index.1 p. ���Since it is not

documents themselves but tsvector values that get indexed, you have two options

here: either build an index on an expression and perform a type cast, or add a

separate column of the tsvector type and index this column. The benefit of the first

approach is that it does not waste any space on storing tsvector values, which are

actually not needed as such. But it is slower than the second option, as the indexing

engine has to recheck all the heap tuples returned by the access method. It means

that the tsvector value has to be calculated again for each rechecked row, and as we

soon will see, �i�� rechecks all rows.

Let’s construct a simple example. We are going to create a two-column table: the

first column will store the document, while the second one will hold the tsvector

value. We can use a trigger to update the second column,2 but it ismore convenient

to simply declare this column as generated: v. ��3

=> CREATE TABLE ts(

doc text,

doc_tsv tsvector GENERATED ALWAYS AS (

to_tsvector('pg_catalog.english', doc)

) STORED

);

1 postgresql.org/docs/14/textsearch-indexes.html
2 postgresql.org/docs/14/textsearch-features#TEXTSEARCH-UPDATE-TRIGGERS.html
3 postgresql.org/docs/14/ddl-generated-columns.html

529

https://postgresql.org/docs/14/textsearch-indexes.html
https://postgresql.org/docs/14/textsearch-features#TEXTSEARCH-UPDATE-TRIGGERS.html
https://postgresql.org/docs/14/ddl-generated-columns.html

Chapter 26 GiST

=> CREATE INDEX ts_gist_idx ON ts

USING gist(doc_tsv);

In the examples above, I used the to_tsvector function with a single argument, having set

theenglish default_text_search_config parameter to define the full-text search configuration. The

volatility category of this function flavor is ������, since it is implicitly dependent on the

parameter value. But here I apply another flavor that defines the configuration explicitly;

this flavor is ��������� and can be used in generation expressions.

Let’s insert several rows:

=> INSERT INTO ts(doc)

VALUES

('Old MacDonald had a farm'),

('And on his farm he had some cows'),

('Here a moo, there a moo'),

('Everywhere a moo moo'),

('Old MacDonald had a farm'),

('And on his farm he had some chicks'),

('Here a cluck, there a cluck'),

('Everywhere a cluck cluck'),

('Old MacDonald had a farm'),

('And on his farm he had some pigs'),

('Here an oink, there an oink'),

('Everywhere an oink oink')

RETURNING doc_tsv;

doc_tsv

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

'farm':5 'macdonald':2 'old':1

'cow':8 'farm':4

'moo':3,6

'everywher':1 'moo':3,4

'farm':5 'macdonald':2 'old':1

'chick':8 'farm':4

'cluck':3,6

'cluck':3,4 'everywher':1

'farm':5 'macdonald':2 'old':1

'farm':4 'pig':8

'oink':3,6

'everywher':1 'oink':3,4

(12 rows)

INSERT 0 12

As such, an �-tree is of no good for indexing documents, since the concept of

bounding boxes makes no sense for them. Therefore, its ��-tree (Russian Doll)

530

26.3 RD-Trees for Full-Text Search

modification is used. Instead of a bounding box, such a tree uses a bounding set,

that is, a set that contains all the elements of its child sets. For full-text search,

such a set contains lexemes of the document, but in the general case a bounding

set can be arbitrary.

There are several ways to represent bounding sets in index entries. The simplest

one is to enumerate all the elements of the set.

Here is how it might look like:

cow, everywher,
farm,macdonald,

moo, old

chick, cluck,
everywher, farm,

oink, pig

cow, everywher,
farm,macdonald,

moo, old

chick, cluck,
everywher, farm,

oink, pig

farm,
macdonald, old

cow, everywher,
farm,moo

farm,
macdonald, old

cow, everywher,
farm,moo

chick, cluck,
everywher, farm

everywher, farm,
oink, pig

chick, cluck,
everywher, farm

everywher, farm,
oink, pig

farm,macdonald, old

farm,macdonald, old

farm,macdonald, old

farm,macdonald, old

farm,macdonald, old

farm,macdonald, old

cow, farm

moo

everywher, moo

cow, farm

moo

everywher, moo

chick, farm

cluck

cluck, everywher

chick, farm

cluck

cluck, everywher

farm, pig

oink

everywher, oink

farm, pig

oink

everywher, oink

To find the documents that satisfy the ���_��� @@ ��_�������(’���’) condition,

we need to descend into the nodes whose child entries are known to contain the

“cow” lexeme.

The problems of such representation are obvious. The number of lexemes in a

document can be enormous, while the page size is limited. Even if each particular

document does not have too many distinct lexemes when taken separately, their

united sets at upper levels of the tree may still turn out too big.

531

Chapter 26 GiST

cow, everywher,
farm,macdonald,

moo, old

chick, cluck,
everywher, farm,

oink, pig

cow, everywher,
farm,macdonald,

moo, old

chick, cluck,
everywher, farm,

oink, pig

farm,
macdonald, old

cow, everywher,
farm,moo

farm,
macdonald, old

cow, everywher,
farm,moo

chick, cluck,
everywher, farm

everywher, farm,
oink, pig

chick, cluck,
everywher, farm

everywher, farm,
oink, pig

farm,macdonald, old

farm,macdonald, old

farm,macdonald, old

farm,macdonald, old

farm,macdonald, old

farm,macdonald, old

cow, farm

moo

everywher, moo

cow, farm

moo

everywher, moo

chick, farm

cluck

cluck, everywher

chick, farm

cluck

cluck, everywher

farm, pig

oink

everywher, oink

farm, pig

oink

everywher, oink

Full-text search uses another solution, namely a more compact signature tree. It

should be well familiar to anyone who had to deal with the Bloom filter.p. ���

Each lexeme can be represented by its signature: a bit string of a particular length

in which only one of the bits is set to 1. The bit that should be set is determined by

the hash function of the lexeme.

A document’s signature is the result of a bitwise �� operation on signatures of all

the lexemes in this document.

Suppose we have chick 1000000

assigned the following cluck 0001000

signatures to our cow 0000010

lexemes: everywher 0010000

farm 0000100

macdonald 0100000

moo 0000100

oink 0000010

old 0000001

pig 0010000

532

26.3 RD-Trees for Full-Text Search

Then the documents’ Old MacDonald had a farm 0100101

signatures will be as And on his farm he had some cows 0000110

follows: Here a moo, there a moo 0000100

Everywhere a moo moo 0010100

And on his farm he had some chicks 1000100

Here a cluck, there a cluck 0001000

Everywhere a cluck cluck 0011000

And on his farm he had some pigs 0010100

Here an oink, there an oink 0000010

Everywhere an oink oink 0010010

And the index tree can be represented like this:

0110111 10111100110111 1011110

0100101 00101100100101 0010110 1011100 00101101011100 0010110

0100101

0100101

0100101

0100101

0100101

0100101

0000110

0000100

0010100

0000110

0000100

0010100

1000100

0001000

0011000

1000100

0001000

0011000

0010100

0000010

0010010

0010100

0000010

0010010

The advantages of this approach are obvious: index entries have the same size,

which is quite small, so the index turns out quite compact. But there are certain

disadvantages too. To begin with, it is impossible to perform an index-only scan

because the index does not store index keys anymore, and each returned ��� has to

be rechecked by the table. The accuracy also suffers: the index may return many

false positives, which have to be filtered out during a recheck.

Let’s take another look at the ���_��� @@ ��_�������(’����’) condition. The sig-

nature of a query is calculated in the same way as that of a document; in this

533

Chapter 26 GiST

particular case it equals 0000010. The consistency function1must find all the child

nodes that have the same bits set in their signatures:

0110111 10111100110111 1011110

0100101 00101100100101 0010110 1011100 00101101011100 0010110

0100101

0100101

0100101

0100101

0100101

0100101

0000110

0000100

0010100

0000110

0000100

0010100

1000100

0001000

0011000

1000100

0001000

0011000

0010100

0000010

0010010

0010100

0000010

0010010

As compared with the previous example, more nodes have to be scanned here be-

cause of false-positive hits. Since the signature’s capacity is limited, some of the

lexemes in a large set are bound to have the same signatures. In this example, such

lexemes are “cow”and “oink.” It means that one and the same signature canmatch

different documents; here the signature of the query corresponds to three of them.

False positives reduce index efficiency but do not affect its correctness in any way:

since false negatives are guaranteed to be ruled out, the required value cannot be

missed.

Clearly, the signature size is actually bigger. By default, it takes ��� bytes (��� bits),

so the probability of collisions is much lower than in this example. If required,v. �� you

can further increase the signature size up to about ���� bytes using the operator

class parameter:

CREATE INDEX ... USING gist(column tsvector_ops(siglen = size));

1 backend/utils/adt/tsgistidx.c, gtsvector_consistent function

534

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/utils/adt/tsgistidx.c;hb=REL_14_STABLE

26.3 RD-Trees for Full-Text Search

Besides, if values are small enough (a bit smaller than 1

16
of the page, which takes

about ��� bytes for a standard page),1 it is tsvector values themselves rather than

their signatures that the tsvector_ops operator class keeps in leaf pages of an index.

To see how indexing works on real data, we can take the pgsql-hackers mailing

list archive.2 It contains ���,��� emails together with their send dates, subjects,

author names, and body texts.

Let’s add a column of the tsvector type and build an index. Here I combine three

values (subject, author, and body text) into a single vector to show that documents

can be generated dynamically and do not have to be stored in a single column.

=> ALTER TABLE mail_messages ADD COLUMN tsv tsvector

GENERATED ALWAYS AS (to_tsvector(

'pg_catalog.english', subject||' '||author||' '||body_plain

)) STORED;

NOTICE: word is too long to be indexed

DETAIL: Words longer than 2047 characters are ignored.

...

NOTICE: word is too long to be indexed

DETAIL: Words longer than 2047 characters are ignored.

ALTER TABLE

=> CREATE INDEX mail_gist_idx ON mail_messages USING gist(tsv);

=> SELECT pg_size_pretty(pg_relation_size('mail_gist_idx'));

pg_size_pretty

−−−−−−−−−−−−−−−−

127 MB

(1 row)

As the column was being filled, a certain number of largest words were filtered out

because of their size. But once the index is ready, it can be used in search queries:

=> EXPLAIN (analyze, costs off, timing off, summary off)

SELECT *

FROM mail_messages

WHERE tsv @@ to_tsquery('magic & value');

1 backend/utils/adt/tsgistidx.c, gtsvector_compress function
2 edu.postgrespro.ru/mail_messages.sql.gz

535

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/utils/adt/tsgistidx.c;hb=REL_14_STABLE
https://edu.postgrespro.ru/mail_messages.sql.gz

Chapter 26 GiST

QUERY PLAN

−−

Index Scan using mail_gist_idx on mail_messages

(actual rows=898 loops=1)

Index Cond: (tsv @@ to_tsquery('magic & value'::text))

Rows Removed by Index Recheck: 7859

(4 rows)

Together with ��� rows that satisfy the condition, the access method also returned

���� rows to be later filtered out by a recheck. If we increase the signature capacity,

the accuracy (and, consequently, the index efficiency) will be improved, but the

index size will grow:

=> DROP INDEX mail_messages_tsv_idx;

=> CREATE INDEX ON mail_messages

USING gist(tsv tsvector_ops(siglen=248));

=> SELECT pg_size_pretty(pg_relation_size('mail_messages_tsv_idx'));

pg_size_pretty

−−−−−−−−−−−−−−−−

139 MB

(1 row)

=> EXPLAIN (analyze, costs off, timing off, summary off)

SELECT *

FROM mail_messages

WHERE tsv @@ to_tsquery('magic & value');

QUERY PLAN

−−

Index Scan using mail_messages_tsv_idx on mail_messages

(actual rows=898 loops=1)

Index Cond: (tsv @@ to_tsquery('magic & value'::text))

Rows Removed by Index Recheck: 2060

(4 rows)

Properties

I have already shown the access method propertiesp. ��� , andmost of them are the same

for all operator classes. But the following two column-level properties are worth

mentioning:

536

26.4 Other Data Types

=> SELECT p.name,

pg_index_column_has_property('mail_messages_tsv_idx', 1, p.name)

FROM unnest(array[

'returnable', 'distance_orderable'

]) p(name);

name | pg_index_column_has_property

−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

returnable | f

distance_orderable | f

(2 rows)

Index-only scans are now impossible, as the original value cannot be restored from

its signature. It is perfectly fine in this particular case: the tsvector value is only

used for search, while we need to retrieve the document itself.

The ordering operator for the tsvector_ops class is not defined either.

26.4 Other Data Types

I have considered only twomost prominent examples. They show that even though

the �i�� method is based on a balanced tree, it can be used for various data types

thanks to different support function implementations in different operator classes.

Whenwe speak about a �i�� index,wemust always specify the operator class, since

it is crucial for index properties.

Here are several more data types currently supported by the �i�� access method.

Geometric data types. Apart from points, �i�� can index other geometric objects:

rectangles, circles, polygons. All these objects are represented by their bound-

ing boxes for this purpose.

The cube extension adds the same-name data type that represents multidi-

mensional cubes. They are indexed using �-trees with bounding boxes of the

corresponding dimension.

Range types. Postgre��� provides several built-in numeric and temporal range

types, such as int4range and tstzrange.1 Custom range types can be defined

using the ������ ���� �� ����� command.

1 postgresql.org/docs/14/rangetypes.html

537

https://postgresql.org/docs/14/rangetypes.html

Chapter 26 GiST

Any range types, both standard and custom, are supported by �i�� via the

range_ops operator class.1 For indexing, a one-dimensional �-tree is applied:

bounding boxes are transformed to bounding segments in this case.

Multirange typesv. �� are supported as well; they rely on the multirange_ops class.

A bounding range comprises all the ranges that are part of a multirange value.

The seg extension provides the same-name data type for intervals with bounds

defined with particular accuracy. It is not considered to be a range type, but it

virtually is, so it is indexed in exactly the same manner.

Ordinal types. Let’s recall the btree_gist extension once again: it provides operator

classes for the �i�� method to support various ordinal data types, which are

typically indexed by a �-tree. Such operator classes can be used to build a

multicolumn index when the data type in one of the columns is not supported

by �-trees.

Network address types. The inet data type has built-in �i�� support, which is im-

plemented via the inet_ops2 operator class.

Integer arrays. The intarray extension expands the functionality of integer arrays

to add �i�� support for them. There are two classes of operators. For small

arrays, you can use gist__int_ops, which implements the ��-tree with full rep-

resentation of keys in index entries. Large arrays will benefit from a more

compact but less precise signature ��-tree based on the gist__bigint_ops op-

erator class.

Extra underscores in the names of operator classes belong to the names of arrays

of basic types. For instance, alongside the more common int4[] notation, an integer

array can be denoted as _int4. There are no _int and _bigint types though.

Ltree. The ltree extension adds the same-name data type for tree-like structures

with labels. Gi�� support is provided via signature ��-trees that use the

gist_ltree_ops operator class for ltree values and the gist__ltree_ops operator

class for arrays of the ltree type.

1 backend/utils/adt/rangetypes_gist.c
2 backend/utils/adt/network_gist.c

538

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/utils/adt/rangetypes_gist.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/utils/adt/network_gist.c;hb=REL_14_STABLE

26.4 Other Data Types

Key–value storage. The hstore extension provides the hstore data type for storing

key–value pairs. The gist_hstore_ops operator class implements index support

based on a signature ��-tree.

Trigrams. The pg_trgm p. ���extension adds the gist_trgm_ops class, which implements

index support for comparing text strings and wildcard search.

539

27
SP-GiST

27.1 Overview

The first letters in the ��-�i�� name stand for Space Partitioning. The space here

is understood as an arbitrary set of values on which the search is performed; it is

not necessarily the space in the conventional sense of the word (such as a two-

dimensional plane). The �i�� part of the name hints at certain similarity between

�i�� and ��-�i�� methods: both of them are generalized search trees and serve as

frameworks for indexing various data types.

The idea behind the ��-�i�� method1 is to split the search space into several non-

overlapping regions, which are in turn can be recursively split into sub-regions.

Such partitioning produces non-balanced trees (which differ from �-trees and �i��

trees) and can be used to implement such well-known structures as quadtrees, k-�

trees, and radix trees (tries).

Non-balanced trees typically have few branches and, consequently, large depth.

For example, a quadtree node has four child nodes at the most, while a node of

a k-� tree can have only two. It does not pose any problems if the tree is kept

in memory; but when stored on disk, tree nodes have to be packed into pages as

densely as possible to minimize �/�, and this task is not so trivial. B-tree and �i��

indexes do not have to take care of it because each of their tree nodes takes the

whole page.

An inner node of an ��-�i�� tree contains a value that satisfies the condition that

holds true for all its child nodes. Such a value is often called a prefix; it plays the

1 postgresql.org/docs/14/spgist.html

backend/access/spgist/README

540

https://postgresql.org/docs/14/spgist.html
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/spgist/README;hb=REL_14_STABLE

27.2 Quadtrees for Points

same role as the predicate in �i�� indexes. Pointers to ��-�i�� child nodes may

have labels.

Leaf node elements contain an indexed value (or some part of it) and the corre-

sponding ���.

Just like �i��, the ��-�i�� access method implements only the main algorithms,

taking care of such low-level details as concurrent access, locks, and logging. New

data types and algorithms of space partitioning can be added via the operator class

interface. The operator class provides most of the logic and defines many aspects

of indexing functionality.

In ��-�i��, the search is depth-first, starting at the root node.1 The nodes that are

worth descending into are chosen by the consistency function, similar to the one

used in �i��. For an inner node of the tree, this function returns a set of child nodes

whose values do not contradict the search predicate. The consistency function

does not descend into these nodes: it merely assesses the corresponding labels

and prefixes. For leaf nodes, it determines whether the indexed value of this node

matches the search predicate.

In a non-balanced tree, search time can vary depending on the branch depth.

There are two support functions that participate in insertion of values into an

��-�i�� index. As the tree is being traversed from the root node, the choose func-

tion takes one of the following decisions: send the new value into an existing child

node, create a new child node for this value, or split the current node (if the value

does not match this node’s prefix). If the chosen leaf page does not have enough

space, the picksplit function determines which nodes should be moved to a new

page.

Now I will provide some examples to illustrate these algorithms.

27.2 Quadtrees for Points

Quadtrees are used for indexing points on a two-dimensional plane. The plane is

recursively split into four regions (quadrants) with respect to the selected point.

1 backend/access/spgist/spgscan.c, spgWalk function

541

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/spgist/spgscan.c;hb=REL_14_STABLE

Chapter 27 SP-GiST

This point is called a centroid; it serves as the node prefix, that is, the condition

that defines the location of child values.

The root node splits the plane into four quadrants.

Then each of them is further split into its own quadrants.

542

27.2 Quadtrees for Points

This procedure goes on until the desired number of partitions is reached.

This example uses an index built on an extended airports table p. ���. The illustrations

show that branch depth depends on point density in the corresponding quadrants.

For visual clarity, I set a small value of the fillfactor 80storage parameter,whichmakes

the tree deeper:

=> CREATE INDEX airports_quad_idx ON airports_big

USING spgist(coordinates) WITH (fillfactor = 10);

The default operator class for points is quad_point_ops.

Operator Class

I have alreadymentioned ��-�i�� support functions:1 the consistency function for

search and the picksplit function for insertions.

Now let’s take a look at the list of support functions of the quad_point_ops operator

class.2 All of them are mandatory.

1 postgresql.org/docs/14/spgist-extensibility.html
2 backend/access/spgist/spgquadtreeproc.c

543

https://postgresql.org/docs/14/spgist-extensibility.html
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/spgist/spgquadtreeproc.c;hb=REL_14_STABLE

Chapter 27 SP-GiST

=> SELECT amprocnum, amproc::regproc

FROM pg_am am

JOIN pg_opclass opc ON opcmethod = am.oid

JOIN pg_amproc amop ON amprocfamily = opcfamily

WHERE amname = 'spgist'

AND opcname = 'quad_point_ops'

ORDER BY amprocnum;

amprocnum | amproc

−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−

1 | spg_quad_config

2 | spg_quad_choose

3 | spg_quad_picksplit

4 | spg_quad_inner_consistent

5 | spg_quad_leaf_consistent

(5 rows)

These functions perform the following tasks:

� The config function reports basic information about the operator class to the

access method.

� The choose function select the node for insertions.

� The picksplit function distributes nodes between pages after a page split.

� The inner_consistent function checks whether the value of the inner node sat-

isfies the search predicate.

� The leaf_consistent function determines whether the value stored in the leaf

node satisfies the search predicate.

There are also several optional functions.

The quad_point_ops operator class supports the same strategies as �i��:p. ��� 1

=> SELECT amopopr::regoperator, oprcode::regproc, amopstrategy

FROM pg_am am

JOIN pg_opclass opc ON opcmethod = am.oid

JOIN pg_amop amop ON amopfamily = opcfamily

JOIN pg_operator opr ON opr.oid = amopopr

WHERE amname = 'spgist'

AND opcname = 'quad_point_ops'

ORDER BY amopstrategy;

1 include/access/stratnum.h

544

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/include/access/stratnum.h;hb=REL_14_STABLE

27.2 Quadtrees for Points

amopopr | oprcode | amopstrategy

−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−

<<(point,point) | point_left | 1

>>(point,point) | point_right | 5

~=(point,point) | point_eq | 6

<@(point,box) | on_pb | 8

<<|(point,point) | point_below | 10

|>>(point,point) | point_above | 11

<−>(point,point) | point_distance | 15

<^(point,point) | point_below | 29

>^(point,point) | point_above | 30

(9 rows)

For example, you can use the above operator >^ to find the airports located to the

North of Dikson:

=> SELECT airport_code, airport_name->>'en'

FROM airports_big

WHERE coordinates >^ '(80.3817,73.5167)'::point;

airport_code | ?column?

−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−−

THU | Thule Air Base

YEU | Eureka Airport

YLT | Alert Airport

YRB | Resolute Bay Airport

LYR | Svalbard Airport, Longyear

NAQ | Qaanaaq Airport

YGZ | Grise Fiord Airport

DKS | Dikson Airport

(8 rows)

=> EXPLAIN (costs off) SELECT airport_code

FROM airports_big

WHERE coordinates >^ '(80.3817,73.5167)'::point;

QUERY PLAN

−−−

Bitmap Heap Scan on airports_big

Recheck Cond: (coordinates >^ '(80.3817,73.5167)'::point)

−> Bitmap Index Scan on airports_quad_idx

Index Cond: (coordinates >^ '(80.3817,73.5167)'::point)

(4 rows)

Let’s take a closer look at the structure and inner workings of a quadtree. We will

use the same simple example with several points that we discussed in the chapter

related to �i��. p. ���

545

Chapter 27 SP-GiST

Here is how the plane can be partitioned in this case:

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

�

�����

��

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

The left illustration shows quadrant numbering at one of the tree levels; in the il-

lustrations that follow, I will place child nodes from left to right in the same order

for the sake of clarity. Points that lie on the boundaries are included into the quad-

rant with the smaller number. The right illustration shows the final partitioning.

You can see a possible structure of this index below. Each inner node references

four child nodes at themost, and each of these pointers is labeledwith the quadrant

number:

5,5

7,7 5,3 3,2

8,9 8,5 6,6 3,3 3,1 0,0 0,4

9,7 1,2

�
��

���

�

��

��� �

�� ���

��

546

27.2 Quadtrees for Points

Page Layout

Unlike �-tree and �i�� indexes, ��-�i�� has no one-to-one correspondence be-

tween tree nodes and pages. Since inner nodes usually do not have too many

children, several nodes have to be packed into a single page. Different types of

nodes are stored in different pages: inner nodes are stored in inner pages, while

leaf nodes go to leaf pages.

Index entries stored in inner pages hold the value used as a prefix, as well as a set

of pointers to child nodes; each pointer may be accompanied by a label.

Leaf page entries consist of a value and a ���.

All leaf nodes related to a particular inner node are stored together in a single page

and are bound into a list. If the page cannot accommodate another node, this list

can be moved to a different page,1 or the page can be split; one way or the other, a

list never stretches over several pages.

To save space, the algorithm tries to add new nodes into the same pages until these

pages are completely filled. The numbers of the last pages used are cached by back-

ends and are periodically saved in the zero page, which is called a metapage. The

metapage contains no reference to the root node, which we would have seen in a

�-tree; the root of an ��-�i�� index is always located in the first page.

Unfortunately, the pageinspect extension does not provide any functions for exploring

��-�i��, but we can use an external extension called gevel.2 It was attempted to integrate

its functionality into pageinspect, but with no success.3

Let’s get back to our example. The illustration below shows how tree nodes can

be distributed between pages. The quad_point_ops operator class does not actually

use labels. Since a node can have four child nodes at the most, the index keeps a

fixed-size array of four pointers, some of which may be empty.

1 backend/access/spgist/spgdoinsert.c, moveLeafs function
2 sigaev.ru/git/gitweb.cgi?p=gevel.git
3 commitfest.postgresql.org/15/1207

547

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/spgist/spgdoinsert.c;hb=REL_14_STABLE
http://sigaev.ru/git/gitweb.cgi?p=gevel.git
https://commitfest.postgresql.org/15/1207

Chapter 27 SP-GiST

5,55,5

7,7 3,27,7 3,2

8,9 9,7 8,58,9 9,7 8,5 6,6 5,3 3,36,6 5,3 3,3 3,1 0,0 1,23,1 0,0 1,2 0,40,4
leaf
pages

inner
pages

root
page

Search

Let’s use the same example to take a look at the algorithm of searching for points

located above point (�,�).

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

The search starts at the root. The inner consistency function1 determines the child

nodes to be descended into. Point (�,�) is compared with the root node’s centroid

1 backend/access/spgist/spgquadtreeproc.c, spg_quad_inner_consistent function

548

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/spgist/spgquadtreeproc.c;hb=REL_14_STABLE

27.2 Quadtrees for Points

(�,�) to choose the quadrants that may contain the sought-after points; in this ex-

ample, these are quadrants � and ��.

Once inside the node with centroid (�,�), we again have to choose the child nodes

to descend into. They belong to quadrants � and ��, but since quadrant �� is empty,

we only need to check one leaf node. The leaf consistency function1 compares the

points of this node with point (�,�) specified in the query. The above condition is

satisfied only for (�,�).

Now we just have to go back one level and check the node that corresponds to

quadrant �� of the root node. It is empty, so the search is complete.

5,5

7,7 5,3 3,2

8,9 8,5 6,6 3,3 3,1 0,0 0,4

9,7 1,2

�

��
���

�

��

��� �

�� ���

��

Insertion

When a value gets inserted into an ��-�i�� tree,2 each action that follows is deter-

mined by the choice function.3 In this particular case, it simply directs the point

to one of the existing nodes that corresponds to its quadrant.

For example, let’s add value (�,�):

1 backend/access/spgist/spgquadtreeproc.c, spg_quad_leaf_consistent function
2 backend/access/spgist/spgdoinsert.c, spgdoinsert function
3 backend/access/spgist/spgquadtreeproc.c, spg_quad_choose function

549

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/spgist/spgquadtreeproc.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/spgist/spgdoinsert.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/spgist/spgquadtreeproc.c;hb=REL_14_STABLE

Chapter 27 SP-GiST

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

The value belongs to quadrant �� and will be added to the corresponding tree node:

5,5

7,7 5,3 3,2

8,9 8,5 6,6 3,3 3,1 0,0 0,4

9,7 1,2

7,1

�
��

���

�

��

��� �

�� ���

��

If the list of leaf nodes in the selected quadrant becomes too big after insertion

(it must fit a single page), the page is split. The picksplit function1 determines

the new centroid by calculating the average value of all points’ coordinates, thus

distributing the child nodes between new quadrants more or less uniformly.

1 backend/access/spgist/spgquadtreeproc.c, spg_quad_picksplit function

550

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/spgist/spgquadtreeproc.c;hb=REL_14_STABLE

27.2 Quadtrees for Points

The following picture illustrates the page overflow caused by point (�,�) insertion:

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

A new inner node with centroid (�,�) is added into the tree, while points (�,�), (�,�),

and (�,�) get redistributed between the new quadrants:

5,5

7,7 5,3 3,2

8,9 8,5 6,6 3,3 3,1 1,1 0,4

1,2 0,0

9,7

2,1

7,1

�
��

���

�

��

��� �

�� ���

��

� ���

551

Chapter 27 SP-GiST

Properties

Access method properties. The spgistmethod reports the following properties:

=> SELECT a.amname, p.name, pg_indexam_has_property(a.oid, p.name)

FROM pg_am a, unnest(array[

'can_order', 'can_unique', 'can_multi_col',

'can_exclude', 'can_include'

]) p(name)

WHERE a.amname = 'spgist';

amname | name | pg_indexam_has_property

−−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−

spgist | can_order | f

spgist | can_unique | f

spgist | can_multi_col | f

spgist | can_exclude | t

spgist | can_include | t

(5 rows)

No support is provided for sorting and uniqueness properties. Multicolumn in-

dexes are not supported either.

Exclusion constraints are supported, just like in �i��.

An ��-�i�� index canv. �� be created with additional ������� columns.

Index-level properties. Unlike �i��, ��-�i�� indexes do not support clusterization:

=> SELECT p.name, pg_index_has_property('airports_quad_idx', p.name)

FROM unnest(array[

'clusterable', 'index_scan', 'bitmap_scan', 'backward_scan'

]) p(name);

name | pg_index_has_property

−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−

clusterable | f

index_scan | t

bitmap_scan | t

backward_scan | f

(4 rows)

Both ways of getting ���s (either one by one or as a bitmap) are supported. Back-

ward scanning is unavailable, as it does not make any sense for ��-�i��.

552

27.2 Quadtrees for Points

Column-level properties. For the most part, column-level properties are the same:

=> SELECT p.name,

pg_index_column_has_property('airports_quad_idx', 1, p.name)

FROM unnest(array[

'orderable', 'search_array', 'search_nulls'

]) p(name);

name | pg_index_column_has_property

−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

orderable | f

search_array | f

search_nulls | t

(3 rows)

Sorting is not supported, so all the related properties do not make any sense and

are disabled.

I have not said anything about ���� values so far, but as we can see in the index

properties, they are supported. Unlike �i��, ��-�i�� indexes do not store ����

values in the main tree. Instead, a separate tree is created; its root is located in the

second index page. Thus, the first three pages always have the same meaning: the

metapage, the root of the main tree, and the root of the tree for ���� values.

Some column-level properties may depend on the particular operator class:

=> SELECT p.name,

pg_index_column_has_property('airports_quad_idx', 1, p.name)

FROM unnest(array[

'returnable', 'distance_orderable'

]) p(name);

name | pg_index_column_has_property

−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

returnable | t

distance_orderable | t

(2 rows)

Like in all the other examples in this chapter, this index can be used for index-only

scans.

But v. ��in general, an operator class does not necessarily store full values in leaf pages,

as it can recheck them by the table instead. It allows using ��-�i�� indexes in

Post��� for potentially large geometry values, to give one example.

553

Chapter 27 SP-GiST

Nearest neighbor search is supportedv. �� ; we have seen the ordering operator <-> in

the operator class.

27.3 K-Dimensional Trees for Points

Points on a plane can also be indexed using another approach to partitioning: we

can split the plane into two sub-regions instead of four. Such partitioning is im-

plemented by the kd_point_ops1 operator class:

=> CREATE INDEX airports_kd_idx ON airports_big

USING spgist(coordinates kd_point_ops);

Note that indexed values, prefixes, and labels may have different data types. For

this operator class, values are represented as points, prefixes are real numbers,

while labels are not provided (as in quad_point_ops).

Let’s select some coordinate on the Y-axis (it defines the latitude in the example

with airports). This coordinate splits the plane into two sub-regions, the upper and

the lower one:

1 backend/access/spgist/spgkdtreeproc.c

554

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/spgist/spgkdtreeproc.c;hb=REL_14_STABLE

27.3 K-Dimensional Trees for Points

For each of these sub-regions, select coordinates on the X-axis (longitude) that

split them into two sub-regions, left and right:

We will continue splitting each of the resulting sub-regions, taking turns between

horizontal and vertical partitioning, until the points in each part fit a single index

page:

All inner leaf nodes of the tree built this way will have only two child nodes. The

method can be easily generalized for spacewith arbitrary dimensions, so such trees

are often referred to as k-dimensional (k-� trees).

555

Chapter 27 SP-GiST

27.4 Radix Trees for Strings

The text_ops operator class for ��-�i�� implements a radix tree for strings.1 Here

the prefix of an inner node is really a prefix, which is common to all the strings in

the child nodes.

Pointers to child nodes are marked by the first byte of the values that follow the

prefix.

For clarity, I use a single character to denote a prefix,but it is true only for �-byte encodings.

In general, the operator class processes a string as a sequence of bytes. Besides,a prefix can

take several other values with special semantics, so there are actually two bytes allocated

per prefix.

Child nodes store parts of values that follow the prefix and the label. Leaf nodes

keep only suffixes.

Here is an example of a radix tree built over several names:

V

ADI

IM E ILISA IR LAV

TIN IY

TINA

A L

D

L

S M S

N R

1 backend/access/spgist/spgtextproc.c

556

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/spgist/spgtextproc.c;hb=REL_14_STABLE

27.4 Radix Trees for Strings

To reconstruct the full value of an index key in a leaf page, we can concatenate all

prefixes and labels, starting from the root node.

Operator Class

The text_ops operator class supports comparison operators typically used with or-

dinal data types, including text strings:

=> SELECT oprname, oprcode::regproc, amopstrategy

FROM pg_am am

JOIN pg_opclass opc ON opcmethod = am.oid

JOIN pg_amop amop ON amopfamily = opcfamily

JOIN pg_operator opr ON opr.oid = amopopr

WHERE amname = 'spgist'

AND opcname = 'text_ops'

ORDER BY amopstrategy;

oprname | oprcode | amopstrategy

−−−−−−−−−+−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−

~<~ | text_pattern_lt | 1

~<=~ | text_pattern_le | 2

= | texteq | 3

~>=~ | text_pattern_ge | 4

~>~ | text_pattern_gt | 5

< | text_lt | 11

<= | text_le | 12

>= | text_ge | 14

> | text_gt | 15

^@ | starts_with | 28

(10 rows)

Regular operators process characters, while operators with tildes deal with bytes.

They do not take collation into account (just like the text_pattern_ops p. ���operator class

for �-tree), so they can be used to speed up search by the ���� condition:

=> CREATE INDEX tickets_spgist_idx ON tickets

USING spgist(passenger_name);

=> EXPLAIN (costs off) SELECT *

FROM tickets

WHERE passenger_name LIKE 'IVAN%';

557

Chapter 27 SP-GiST

QUERY PLAN

−−−

Bitmap Heap Scan on tickets

Filter: (passenger_name ~~ 'IVAN%'::text)

−> Bitmap Index Scan on tickets_spgist_idx

Index Cond: ((passenger_name ~>=~ 'IVAN'::text) AND

(passenger_name ~<~ 'IVAO'::text))

(5 rows)

If you use regular operators >= and < together with a collation other than “C,” the index

becomes virtually useless, as it deals with bytes rather than characters.

For such cases ofv. �� prefix search, the operator class provides the ^@ operator, which

is more suitable:

=> EXPLAIN (costs off) SELECT *

FROM tickets

WHERE passenger_name ^@ 'IVAN';

QUERY PLAN

−−

Bitmap Heap Scan on tickets

Recheck Cond: (passenger_name ^@ 'IVAN'::text)

−> Bitmap Index Scan on tickets_spgist_idx

Index Cond: (passenger_name ^@ 'IVAN'::text)

(4 rows)

A radix tree representation can sometimes turn out to bemuchmore compact than

a �-tree, as it does not keep full values: it reconstructs them as required while the

tree is being traversed.

Search

Let’s run the following query on the names table:

SELECT *

FROM names

WHERE name ~>=~ 'VALERIY'

AND name ~<~ 'VLADISLAV';

558

27.4 Radix Trees for Strings

First, the inner consistency function1 is called on the root to determine the child

nodes to descend into. This function concatenates prefix � and labels � and �. The

received value �� goes into the query condition; string literals are truncated there,

so that their length does not exceed the length of the value being checked: �� ~>=~

'��' ��� �� ~<~ '��'. The condition is satisfied, so the child node with label � needs

to be checked. The �� value is checked in the same way. It is also a match, so the

node with label �must be checked too.

Now let’s take the node that corresponds to value ��. Its prefix is empty, so for the

three child nodes the inner consistency function reconstructs values ���, ���, and

��� by concatenating �� received at the previous step and the label. The condition

��� ~>=~ '���' ��� ��� ~<~ '���' is not true, but the other two values are suitable.

As the tree is being traversed this way, the algorithm filters out non-matching

branches and gets to leaf nodes. The leaf consistency function2 checks whether the

value reconstructed during the tree traversal satisfies the query condition. Match-

ing values are returned as the result of an index scan.

V

ADI

IM E ILISA IR LAV

TIN IY

TINA

A L

D

L

S M S

N R

1 backend/access/spgist/spgtextproc.c, spg_text_inner_consistent function
2 backend/access/spgist/spgtextproc.c, spg_text_leaf_consistent function

559

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/spgist/spgtextproc.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/spgist/spgtextproc.c;hb=REL_14_STABLE

Chapter 27 SP-GiST

Note that although the query uses greater than and less than operators, which are

common to �-trees, range search by ��-�i�� is much less efficient. In a �-tree, it is

enough to descend into a single boundary value of the range and then scan the list

of leaf pages.

Insertion

The choice function of operator classes for points can always direct a new value

into one of the existing sub-regions (a quadrant or one of the halves). But it is not

true for radix trees: a new value may not match any of the existing prefixes, and

the inner node has to be split in this case.

Let’s add the name ����� to an already built tree.

The choice function1 manages to descend from the root to the next node (� + �),

but the remaining part of the value ��� does not match the ��� prefix. The node

has to be split in two: one of the resulting nodes will contain the common part of

the prefix (��), while the rest of the prefix will be moved one level down:

ADI

IR LAV

M S

AD

IR LAV

I

M S

Then the choice function is called again on the same node. The prefix now cor-

responds to the value, but there is no child node with a suitable label (�), so the

function decides to create such a node. The final result is shown in the illustra-

tion below; the nodes that have been added or modified during the insertion are

highlighted.

1 backend/access/spgist/spgtextproc.c, spg_text_choose function

560

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/spgist/spgtextproc.c;hb=REL_14_STABLE

27.4 Radix Trees for Strings

V

AD

IM E ILISA

TIN IY IR LAV

TINA

A L

D

L

S A I

M SN R

Properties

I have already described the access method and index-level properties above; they

are common to all the classes. Most of the column-level properties also remain the

same.

=> SELECT p.name,

pg_index_column_has_property('tickets_spgist_idx', 1, p.name)

FROM unnest(array[

'returnable', 'distance_orderable'

]) p(name);

name | pg_index_column_has_property

−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

returnable | t

distance_orderable | f

(2 rows)

Even though indexed values are not explicitly stored in the tree, index-only scans

are supported, since values are reconstructed as the tree is being traversed from

the root to leaf nodes.

561

Chapter 27 SP-GiST

As for the distance operator, it is not defined for strings, so nearest neighbor search

is not provided by this operator class.

It does not mean that the concept of distance cannot be implemented for strings. For

example, the pg_trgm extension adds a distance operator based on trigrams: the fewer

common trigrams are found in two strings, the farther they are assumed to be located

from each other. Then there is the Levenshtein distance, which is defined as the minimal

number of single-character edits required to convert one string into another. A function

that calculates such a distance is provided in the fuzzystrmatch extension. But none of the

extensions provides an operator class with ��-�i�� support.

27.5 Other Data Types

S�-�i�� operator classes are not limited to indexing points and text strings that we

have discussed above.

Geometric types. The box_ops1 operator class implements a quadtree for rectan-

gles. Rectangles are represented by points in a four-dimensional space, so the

area is split into sixteen partitions.

The poly_opsv. �� class can be used to index polygons. It is a fuzzy operator class: it

actually uses bounding boxes instead of polygons, just like box_ops, and then

rechecks the result by the table.

Whether to choose �i�� or ��-�i�� largely depends on the nature of data to be

indexed. For example, Post��� documentation recommends ��-�i�� for ob-

jects with large overlaps (also known as “spaghetti data”).2

Range types. The quadtree for ranges offers the range_ops operator class.3 An in-

terval is defined by a two-dimensional point: the X-axis represents the lower

boundary, while the Y-axis represents the upper boundary.

Network address types. For the inet data type, the inet_ops4 operator class imple-

ments a radix tree.

1 backend/utils/adt/geo_spgist.c
2 postgis.net/docs/using_postgis_dbmanagement.html#spgist_indexes
3 backend/utils/adt/rangetypes_spgist.c
4 backend/utils/adt/network_spgist.c

562

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/utils/adt/geo_spgist.c;hb=REL_14_STABLE
https://postgis.net/docs/using_postgis_dbmanagement.html#spgist_indexes
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/utils/adt/rangetypes_spgist.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/utils/adt/network_spgist.c;hb=REL_14_STABLE

28
GIN

28.1 Overview

According to its authors, ��� stands for a potent and undaunted spirit, not for an

alcoholic beverage.1 But there is also a formal interpretation: this acronym is ex-

panded as Generalized Inverted Index.

The ��� access method is designed for data types representing non-atomic values

made up of separate elements (for example, documents consist of lexemes in the

context of full-text search). Unlike �i��, which indexes values as a whole, ��� in-

dexes only their elements; each element is mapped to all the values that contain it.

We can compare this method to a book’s index, which comprises all the important

terms and lists all the pages where these terms arementioned. To be convenient to

use, it must be compiled in alphabetical order, otherwise it would be impossible to

navigate through quickly. In a similar way, ��� relies on the fact that all elements

of compound values can be sorted; its main data structure is �-tree. p. ���

The implementation of the ��� tree of elements is less complex than that of a reg-

ular �-tree: it has been designed to contain rather small sets of elements repeated

multiple times.

This assumption leads to two important conclusions:

• An element must be stored in an index only once.

Each element ismapped to a list of ���s,which is called a posting list. If this list

is rather short, it is stored together with the element; longer lists are moved

1 postgresql.org/docs/14/gin.html

backend/access/gin/README

563

https://postgresql.org/docs/14/gin.html
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/gin/README;hb=REL_14_STABLE

Chapter 28 GIN

into a separate posting tree, which is actually a �-tree. Just like element trees,

posting lists are sorted; it does not matter much from the user’s perspective

but helps to speed up data access and reduce index size.

• There is no point in removing elements from a tree.

Even if the list of ���s for a particular element is empty, the same element is

likely to appear again as part of some other value.

Thus, an index is a tree of elements whose leaf entries are bound to either flat lists

or trees of ���s.

Just like �i�� and ��-�i�� access methods, ��� can be used to index a whole vari-

ety of data types via a simplified interface of operator classes. Operators of such

classes usually check whether the indexed composite value matches a particular

set of elements (just like the@@ operator checks whether a document satisfies a

full-text search query).

To index a particular data type, the ��� method must be able to split composite

values into elements, sort these elements, and check whether the found value sat-

isfies the query. These operations are implemented by support functions of the

operator class.

28.2 Index for Full-Text Search

G�� is mainly applied to speed up full-text search, so I will go on with the example

used to illustrate �i�� indexing.p. ��� As you can guess, compound values in this case

are documents, while elements of these values are lexemes.

Let’s build a ��� index on the “Old MacDonald” table:p. ���

=> CREATE INDEX ts_gin_idx ON ts USING gin(doc_tsv);

A possible structure of this index is shown below. Unlike in the previous illustra-

tions, here I provide actual ��� values (shown with a grey background), as they are

very important for understanding the algorithms. These values suggest that heap

tuples have the following ��s:

564

28.2 Index for Full-Text Search

=> SELECT ctid, * FROM ts;

ctid | doc | doc_tsv

−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

(0,1) | Old MacDonald had a farm | 'farm':5 'macdonald':2 'old':1

(0,2) | And on his farm he had some cows | 'cow':8 'farm':4

(0,3) | Here a moo, there a moo | 'moo':3,6

(0,4) | Everywhere a moo moo | 'everywher':1 'moo':3,4

(1,1) | Old MacDonald had a farm | 'farm':5 'macdonald':2 'old':1

(1,2) | And on his farm he had some chicks | 'chick':8 'farm':4

(1,3) | Here a cluck, there a cluck | 'cluck':3,6

(1,4) | Everywhere a cluck cluck | 'cluck':3,4 'everywher':1

(2,1) | Old MacDonald had a farm | 'farm':5 'macdonald':2 'old':1

(2,2) | And on his farm he had some pigs | 'farm':4 'pig':8

(2,3) | Here an oink, there an oink | 'oink':3,6

(2,4) | Everywhere an oink oink | 'everywher':1 'oink':3,4

(12 rows)

metapage

everywher oinkeverywher oink

chick cluck cow everywher farm macdonald moo oink old pig

1,2 1,3

1,4

0,2 0,4

1,4

2,4

0,1

1,1

2,1

0,3

0,4

2,3

2,4

0,1

1,1

2,1

2,2

1,2

0,1 0,2 1,1 1,2 2,1 2,2

565

Chapter 28 GIN

Note some differences from a regular �-tree indexp. ��� here. The leftmost keys in inner

�-tree nodes are empty, as they are actually redundant; in a ��� index, they are not

stored at all. For this reason, references to child nodes are shifted too. The high key

is used in both indexes, but in ��� it takes its legitimate rightmost position. Same-

level nodes in a �-tree are bound into a bidirectional list; ��� uses a unidirectional

list, since the tree is always traversed in only one direction.

In this theoretical example, all posting lists fit regular pages, except the one for the

“farm” lexeme. This lexeme occurred in as many as six documents, so its ��s were

moved into a separate posting tree.

Page Layout

G�� page layout is very similar to that of a �-tree. We can peek into an index using

the pageinspect extension. Let’s create a ��� index on the table that stores emails

of the pgsql-hackersp. ��� mailing list:

=> CREATE INDEX mail_gin_idx ON mail_messages USING gin(tsv);

The zero page (the metapage) contains the basic statistics, such as the number of

elements and pages of other types:

=> SELECT *

FROM gin_metapage_info(get_raw_page('mail_gin_idx',0)) \gx

−[RECORD 1]−−−−+−−−−−−−−−−−

pending_head | 4294967295

pending_tail | 4294967295

tail_free_size | 0

n_pending_pages | 0

n_pending_tuples | 0

n_total_pages | 22957

n_entry_pages | 13522

n_data_pages | 9434

n_entries | 999109

version | 2

G�� uses the special spacep. �� of index pages; for example, this space stores the bits

that define the page type:

566

28.2 Index for Full-Text Search

=> SELECT flags, count(*)

FROM generate_series(0,22956) AS p, -- n_total_pages

gin_page_opaque_info(get_raw_page('mail_gin_idx',p))

GROUP BY flags

ORDER BY 2;

flags | count

−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−

{meta} | 1

{} | 137

{data} | 1525

{data,leaf,compressed} | 7909

{leaf} | 13385

(5 rows)

The page with the meta attribute is of course the metapage. Pages with the data

attribute belong to posting lists, while pages without this attribute are related to

element trees. Leaf pages have the leaf attribute.

In the next example, another pageinspect function returns the information on ���s

that are stored in trees’ leaf pages. Each entry of such a tree is virtually a small list

of ���s rather than a single ���:

=> SELECT left(tids::text,60)||'...' tids

FROM gin_leafpage_items(get_raw_page('mail_gin_idx',24));

tids

−−−

{"(4771,4)","(4775,2)","(4775,5)","(4777,4)","(4779,1)","(47...

{"(5004,2)","(5011,2)","(5013,1)","(5013,2)","(5013,3)","(50...

{"(5435,6)","(5438,3)","(5439,3)","(5439,4)","(5439,5)","(54...

...

{"(9789,4)","(9791,6)","(9792,4)","(9794,4)","(9794,5)","(97...

{"(9937,4)","(9937,6)","(9938,4)","(9939,1)","(9939,5)","(99...

{"(10116,5)","(10118,1)","(10118,4)","(10119,2)","(10121,2)"...

(27 rows)

Posting lists are ordered, which allows them to be compressed (hence the same-

name attribute). Instead of a six-byte ���, they store its difference with the pre-

vious value, which is represented by a variable number of bytes:1 the smaller this

difference, the less space the data takes.

1 backend/access/gin/ginpostinglist.c

567

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/gin/ginpostinglist.c;hb=REL_14_STABLE

Chapter 28 GIN

Operator Class

Here is the list of support functions for ��� operator classes:1

=> SELECT amprocnum, amproc::regproc

FROM pg_am am

JOIN pg_opclass opc ON opcmethod = am.oid

JOIN pg_amproc amop ON amprocfamily = opcfamily

WHERE amname = 'gin'

AND opcname = 'tsvector_ops'

ORDER BY amprocnum;

amprocnum | amproc

−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

1 | gin_cmp_tslexeme

2 | pg_catalog.gin_extract_tsvector

3 | pg_catalog.gin_extract_tsquery

4 | pg_catalog.gin_tsquery_consistent

5 | gin_cmp_prefix

6 | gin_tsquery_triconsistent

(6 rows)

The first support function compares two elements (two lexemes in this case). If

the lexemes were represented by a regular ��� type supported by �-tree, ��� would

automatically use comparison operators defined in the �-tree operator class.

The fifth (optional) function is used in partial search to check whether an index

element partially matches the search key. In this particular case, partial search

consists in searching lexemes by a prefix. For example, the query “c:*” corresponds

to all lexemes starting with letter “c.”

The second function extracts lexemes from the document, while the third one ex-

tracts lexemes from the search query. The use of different functions is justified

because, at the very least, the document and the query are represented by differ-

ent data types, namely tsvector and tsquery. Besides, the function for the search

query determines how the search will be performed. If the query requires the doc-

ument to contain a particular lexeme, the search will be limited to the documents

that contain at least one lexeme specified in the query. If there is no such condi-

tion (for example, if you need documents that do not contain a particular lexeme),

all the documents have to be scanned—which is of course much more expensive.

1 postgresql.org/docs/14/gin-extensibility.html

backend/utils/adt/tsginidx.c

568

https://postgresql.org/docs/14/gin-extensibility.html
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/utils/adt/tsginidx.c;hb=REL_14_STABLE

28.2 Index for Full-Text Search

If the query contains any other search keys, v. ��the index is first scanned by these keys, and

then these intermediate results are rechecked. Thus, there is no need to scan the index in

full.

The fourth and sixth functions are consistency functions, which determine

whether the found document satisfies the search query. As input, the fourth func-

tion gets the exact information on which lexemes specified in the query appear in

the document. The sixth function operates in the context of uncertainty and can

be called when it is not yet clear whether some of the lexemes are present in the

document or not. An operator class does not have to implement both functions:

it is enough to provide only one of them, but search efficiency may suffer in this

case.

The tsvector_ops operator class supports only one operator that matches the docu-

ment against the search query: @@,1 which is also included into the �i�� operator

class.

Search

Let’s take a look at the search algorithm for the “everywhere | oink” query, where

two lexemes are connected by the �� operator. First, a support function2 extracts

lexemes “everywher” and “oink” (search keys) from the search string of the tsquery

type.

Since the query demands particular lexemes to be present, ���s of the documents

that contain at least one key specified in the query are bound into a list. For this

purpose, the ���s that correspond to each search key are searched in the tree of

lexemes and are added into a common list. All the ���s stored in an index are

ordered, which allows merging p. ���several sorted streams of ���s into one.3

Note that at this point it does not matter yet whether the keys were combined by

���, ��, or any other operator: the search engine deals with the list of keys and

knows nothing about the search query semantics.

1 backend/utils/adt/tsvector_op.c, ts_match_vq function
2 backend/utils/adt/tsginidx.c, gin_extract_tsquery function
3 backend/access/gin/ginget.c, keyGetItem function

569

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/utils/adt/tsvector_op.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/utils/adt/tsginidx.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/gin/ginget.c;hb=REL_14_STABLE

Chapter 28 GIN

everywher oinkeverywher oink

chick cluck cow everywher farm macdonald moo oink old pig

1,2 1,3

1,4

0,2 0,4

1,4

2,4

0,1

1,1

2,1

0,3

0,4

2,3

2,4

0,1

1,1

2,1

2,2

1,2

0,1 0,2 1,1 1,2 2,1 2,2

Each found ��� that corresponds to a document is checked by the consistency func-

tion.1 It is this function that interprets the search query and leaves only those ���s

that satisfy the query (or at least may satisfy it and have to be rechecked by the ta-

ble).

In this particular case, the consistency function leaves all the ���s:

consistency
��� “everywher” “oink” function

(�,�) 3 – 3

(�,�) 3 – 3

(�,�) – 3 3

(�,�) 3 3 3

Instead of a regular lexeme, search queries can contain a prefix. It is useful if an

application user can enter the first letters of a word into the search field, expecting

1 backend/utils/adt/tsginidx.c, gin_tsquery_triconsistent function

570

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/utils/adt/tsginidx.c;hb=REL_14_STABLE

28.2 Index for Full-Text Search

to get the results right away. For example, the “pig:*” query will match all the

documents that contain lexemes starting with “pig”: here we get “pigs,” and we

would also get “pigeons” if old MacDonald had bred them on his farm.

Such partial searchmatches indexed lexemes against the search key using a special

support function;1 in addition to prefixmatching, this function can also implement

other logic for partial search.

Frequent and Rare Lexemes

If searched lexemes occur in a documentmultiple times, the created list of ���swill

turn out long, which is of course inefficient. Fortunately, it can often be avoided if

the query also contains some rare lexemes.

Let’s consider the“farm& cluck”query. The“cluck” lexeme occurs two times,while

the “farm” lexeme appears six times. Instead of treating both lexemes equally and

building the full list of ���s by them, the rare “cluck” lexeme is considered manda-

tory,while themore frequent “farm” lexeme is treated as optional, as it is clear that

(taking the query semantics into account) a document with the “farm” lexeme can

satisfy the query only if it contains the “cluck” lexeme too.

Thus, an index scan determines the first document that contains “cluck”; its ���

is (�,�). Then we have to find out whether this document also contains the “farm”

lexeme, but all the documents whose ���s are smaller than (�,�) can be skipped.

Since frequent lexemes are likely to correspond to many ���s, chances are high

that they are stored in a separate tree, so some pages can be skipped as well. In

this particular case, the search in the tree of “farm” lexemes starts with (�,�).

This procedure is repeated for the subsequent values of the mandatory lexeme.

Clearly, this optimization can also be applied to more complex search scenarios

that involve more than two lexemes. The algorithm sorts the lexemes in the or-

der of their frequency, adds them one by one to the list of mandatory lexemes,

and stops when the remaining lexemes are no longer able to guarantee that the

document satisfies the query.2

1 backend/utils/adt/tsginidx.c, gin_cmp_prefix function
2 backend/access/gin/ginget.c, startScanKey function

571

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/utils/adt/tsginidx.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/gin/ginget.c;hb=REL_14_STABLE

Chapter 28 GIN

For example, let’s consider the query “farm & (cluck | chick)”. The least frequent

lexeme is “chick”; it is added to the list of mandatory lexemes right away. To check

whether other lexemes can be considered optional, the consistency function takes

false for the mandatory lexeme and true for all the other lexemes. The function

returns true AND (true OR false) = true, which means that the remaining lexemes

are “self-sufficient,” and at least one of them must become mandatory.

The next least frequent lexeme (“cluck”) is added into the list, and now the consis-

tency function returns true AND (false OR false) = false. Thus, “chick” and “cluck”

lexemes become mandatory, while “farm” remains optional.

everywher oinkeverywher oink

chick cluck cow everywher farm macdonald moo oink old pig

1,2 1,3

1,4

0,2 0,4

1,4

2,4

0,1

1,1

2,1

0,3

0,4

2,3

2,4

0,1

1,1

2,1

2,2

1,2

0,1 0,2 1,1 1,2 2,1 2,2

The length of the posting list is three, as the mandatory lexemes have occurred

three times:

consistency
��� “chick” “cluck” “farm” function

(�,�) 3 – 3 3

(�,�) – 3 – –

(�,�) – 3 – –

572

28.2 Index for Full-Text Search

Thus, if lexeme frequencies are known p. ���, it is possible to merge trees of lexemes in

the most efficient way, starting from rare lexemes and skipping those page ranges

of frequent lexemes that are sure to be redundant. It reduces the number of times

the consistency function has to be called.

To make sure that this optimization really works, let’s query p. ���the pgsql-hackers

archive. We will need to specify two lexemes, a common and a rare one:

=> SELECT word, ndoc

FROM ts_stat('SELECT tsv FROM mail_messages')

WHERE word IN ('wrote', 'tattoo');

word | ndoc

−−−−−−−−+−−−−−−−−

wrote | 231173

tattoo | 2

(2 rows)

It turns out that a document that contains them both does exist:

=> \timing on

=> SELECT count(*) FROM mail_messages

WHERE tsv @@ to_tsquery('wrote & tattoo');

count

−−−−−−−

1

(1 row)

Time: 0,631 ms

This query is performed almost just as fast as the search for a single word “tattoo”:

=> SELECT count(*) FROM mail_messages

WHERE tsv @@ to_tsquery('tattoo');

count

−−−−−−−

2

(1 row)

Time: 2,227 ms

But if we were looking for a single word “wrote,” the search would take much

longer:

=> SELECT count(*) FROM mail_messages

WHERE tsv @@ to_tsquery('wrote');

573

Chapter 28 GIN

count

−−−−−−−−

231173

(1 row)

Time: 343,556 ms

=> \timing off

Insertions

A ��� index cannot contain duplicates;1 if an element to be added is already

present in the index, its ��� is simply added to the posting list or tree of an al-

ready existing element. A posting list is a part of an index entry that cannot take

toomuch space in a page, so if the allotted space is exceeded, the list is transformed

into a tree.2

When a new element (or a new ���) is being added into a tree, a page overflow can

occur; in this case, the page is split into two, and the elements are redistributed

between them.3

But each document typically contains many lexemes that have to be indexed. So

even if we create or modify just one document, the index tree still undergoes a lot

of modifications. That is why ��� updates are rather slow.

The illustration below shows the state of the tree after the row“Everywhere clucks,

moos, and oinks”with ��� (�,�)was inserted into the table. The posting lists of lex-

emes “cluck,” “moo,” and “oink”were extended; the list of the “everywher” lexeme

exceeded the maximal size and was split off as a separate tree.

However, if an index gets updated to incorporate changes related to several doc-

uments at once, the total amount of work is likely to be reduced as compared to

consecutive changes, as these documents may contain some common lexemes.

This optimization is controlled by theon fastupdate storage parameter. Deferred in-

dex updates are accumulated in an unordered pending list,p. ��� which is physically

stored in separate list pages outside the element tree. When this list becomes

1 backend/access/gin/gininsert.c, ginEntryInsert function
2 backend/access/gin/gininsert.c, addItemPointersToLeafTuple function
3 backend/access/gin/ginbtree.c, ginInsertValue function

574

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/gin/gininsert.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/gin/gininsert.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/gin/ginbtree.c;hb=REL_14_STABLE

28.2 Index for Full-Text Search

big enough, all its contents is transferred into the index in one go, and the list is

cleared.1 The maximal size of the list is defined either by the 4MBgin_pending_list_limit

parameter or by the same-name index storage parameter.

everywher oinkeverywher oink

chick cluck cow everywher farm macdonald moo oink old pig

1,2 1,3

1,4

4,1

0,2 0,1

1,1

2,1

0,3

0,4

4,1

2,3

2,4

4,1

0,1

1,1

2,1

2,2

1,2

0,1 0,2 1,1 1,2 2,1 2,2

2,4

0,4 1,4 2,4 4,1

By default, such deferred updates are enabled, but you should keep in mind that

they slow down search: apart from the tree itself, the whole unordered list of lex-

emes has to be scanned. Besides, insertion time becomes less predictable, as any

change can lead to an overflow that incurs an expensive merge procedure. The

latter is partially smoothed by the fact that the merge can be also performed asyn-

chronously during index vacuuming.

When a new index is created,2 the elements also get added in batches rather than

one by one, which would be too slow. Instead of being saved into an unordered

list on disk, all the changes are accumulated in a 64MBmaintenance_work_memmemory

chunk and get transferred into an index once this chunk has no more free space.

The more memory is allocated for this operation, the faster the index is built.

1 backend/access/gin/ginfast.c, ginInsertCleanup function
2 backend/access/gin/gininsert.c, ginbuild function

575

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/gin/ginfast.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/gin/gininsert.c;hb=REL_14_STABLE

Chapter 28 GIN

The examples provided in this chapter prove ��� superiority over �i�� signature

treesp. ��� when it comes to search precision. For this reason, it is ��� that is typically

used for full-text search. However, the problem of slow ��� updates may tip the

scale in favor of �i�� if the data is being actively updated.

Limiting Result Set Size

The ��� access method always returns the result as a bitmap; it is impossible to

get ���s one by one. In other words, the B����� S���p. ��� property is supported, but the

I���� S��� property is not.

The reason for this limitation is the unordered list of deferred updates. In the case

of an index access, this list is scanned to build a bitmap, and then this bitmap is

updated with the data of the tree. If the unordered list gets merged with the tree

(as the result of an index update or during vacuuming) while search is in progress,

one and the same value can be returned twice, which is unacceptable. But in the

case of a bitmap it does not pose any problems: the same bit will simply be set

twice.

Consequently, using the ����� clause with a ��� index is not quite efficient, as the

bitmap still has to be built in full, which contributes a fair share to the total cost:

=> EXPLAIN SELECT * FROM mail_messages

WHERE tsv @@ to_tsquery('hacker')

LIMIT 1000;

QUERY PLAN

−−−

Limit (cost=481.41..1964.22 rows=1000 width=1258)

−> Bitmap Heap Scan on mail_messages

(cost=481.41..74939.28 rows=50214 width=1258)

Recheck Cond: (tsv @@ to_tsquery('hacker'::text))

−> Bitmap Index Scan on mail_gin_idx

(cost=0.00..468.85 rows=50214 width=0)

Index Cond: (tsv @@ to_tsquery('hacker'::text))

(7 rows)

Therefore, the ��� method offers a special feature that limits the number of re-

sults returned by an index scan. This limit is imposed by the0 gin_fuzzy_search_limit

parameter, which is turned off by default. If this parameter is enabled, the index

576

28.2 Index for Full-Text Search

access method will randomly skip some values to get roughly the specified number

of rows (hence the name “fuzzy”):1

=> SET gin_fuzzy_search_limit = 1000;

=> SELECT count(*)

FROM mail_messages

WHERE tsv @@ to_tsquery('hacker');

count

−−−−−−−

727

(1 row)

=> SELECT count(*)

FROM mail_messages

WHERE tsv @@ to_tsquery('hacker');

count

−−−−−−−

791

(1 row)

=> RESET gin_fuzzy_search_limit;

Note that there are no ����� clauses in these queries. It is the only legitimate way

to get different data when using an index scan and a heap scan. The planner knows

nothing about such behavior of ��� indexes and does not take this parameter value

into account when estimating the cost.

Properties

All the properties of the gin access method are the same at all levels; they do not

depend on a particular operator class.

Access Method Properties

=> SELECT a.amname, p.name, pg_indexam_has_property(a.oid, p.name)

FROM pg_am a, unnest(array[

'can_order', 'can_unique', 'can_multi_col',

'can_exclude', 'can_include'

]) p(name)

WHERE a.amname = 'gin';

1 backend/access/gin/ginget.c, dropItem macro

577

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/gin/ginget.c;hb=REL_14_STABLE

Chapter 28 GIN

amname | name | pg_indexam_has_property

−−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−

gin | can_order | f

gin | can_unique | f

gin | can_multi_col | t

gin | can_exclude | f

gin | can_include | f

(5 rows)

G�� supports neither sorting nor unique constraints.

Multicolumn indexes are supported, but it is worth mentioning that the order of

their columns is irrelevant. Unlike a regular �-tree, a multicolumn ��� index does

not store composite keys; instead, it extends separate elements with the corre-

sponding column number.

Exclusion constraints cannot be supported because the I���� S��� property is un-

available.

G�� does not support additional ������� columns. Such columns simply do not

make much sense here, as it is hardly possible to use a ��� index as covering: it

contains only separate elements of an index value, while the value itself is stored

in the table.

Index-Level Properties

=> SELECT p.name, pg_index_has_property('mail_gin_idx', p.name)

FROM unnest(array[

'clusterable', 'index_scan', 'bitmap_scan', 'backward_scan'

]) p(name);

name | pg_index_has_property

−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−

clusterable | f

index_scan | f

bitmap_scan | t

backward_scan | f

(4 rows)

Fetching results one by one is not supported: the index access always returns a

bitmap.

For the same reason, it makes no sense to reorder tables by a ��� index: the bitmap

always corresponds to the physical layout of data in a table, whichever it is.

578

28.2 Index for Full-Text Search

Backward scanning is not supported: this feature is useful for regular index scans,

not for bitmap scans.

Column-Level Properties

=> SELECT p.name,

pg_index_column_has_property('mail_gin_idx', 1, p.name)

FROM unnest(array[

'orderable', 'search_array', 'search_nulls',

'returnable', 'distance_orderable'

]) p(name);

name | pg_index_column_has_property

−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

orderable | f

search_array | f

search_nulls | f

returnable | f

distance_orderable | f

(5 rows)

None of the column-level properties are available: neither sorting (for obvious rea-

sons) nor using the index as covering (since the document itself is not stored in the

index). N��� support is not available either (it does not make sense for elements

of non-atomic types).

GIN Limitations and RUM Index

Potent as it is, ��� still cannot address all the challenges of full-text search. Al-

though the tsvector type does indicate positions of lexemes, this information does

not make it into an index. Therefore, ��� cannot be used to speed up phrase search,

which takes lexeme proximity into account. Moreover, search engines usually re-

turn results by relevance (whatever this term might mean), and since ��� does not

support ordering operators, the only solution herewould be computing the ranking

function for each resulting row, which is of course very slow.

These drawbacks have been addressed by the ��� access method (whose name

makes us doubt developers’ sincerity when it comes to the true meaning of ���).

579

Chapter 28 GIN

This access method is provided as an extension; you can either download the cor-

responding package from the ���� repository1 or get the source code itself.2

R�� is based on ���, but they have two major differences. First, ��� does not

provide deferred updates, so it supports regular index scans in addition to bitmap

scans and implements ordering operators. Second, ��� index keys can be extended

with additional information. This feature resembles ������� columns to some ex-

tent, but here additional information is bound to a particular key. In the context

of full-text search, ��� operator class maps lexeme occurrences to their positions

in the document, which speeds up phrase search and result ranking.

The downsides of this approach are slow updates and larger index sizes. Besides,

since the rum access method is provided as an extension, it relies on the generic

��� mechanism,3 which is slower than the built-in logging and generates bigger

volumes of ���.

28.3 Trigrams

The pg_trgm4 extension can assess word similarity by comparing the number of co-

inciding three-letter sequences (trigrams). Word similarity can be used alongside

full-text search to return some results even if the words to search for have been

entered with typos.

The gin_trgm_ops operator class implements text string indexing. To single out el-

ements of text values, it extracts various three-letter substrings rather than words

or lexemes (only letters and digits are taken into account; other characters are

ignored). Within an index, trigrams are represented as integers. Note that for

non-Latin characters, which take from two to four bytes in the ���-� encoding,

such representation does not allow decoding the original symbols.

=> CREATE EXTENSION pg_trgm;

=> SELECT unnest(show_trgm('macdonald')),

unnest(show_trgm('McDonald'));

1 postgresql.org/download
2 github.com/postgrespro/rum
3 postgresql.org/docs/14/generic-wal.html
4 postgresql.org/docs/14/pgtrgm.html

580

https://postgresql.org/download
https://github.com/postgrespro/rum
https://postgresql.org/docs/14/generic-wal.html
https://postgresql.org/docs/14/pgtrgm.html

28.3 Trigrams

unnest | unnest

−−−−−−−−+−−−−−−−−

m | m

ma | mc

acd | ald

ald | cdo

cdo | don

don | ld

ld | mcd

mac | nal

nal | ona

ona |

(10 rows)

This class supports operators for both precise and fuzzy comparison of strings and

words.

=> SELECT amopopr::regoperator, oprcode::regproc

FROM pg_am am

JOIN pg_opclass opc ON opcmethod = am.oid

JOIN pg_amop amop ON amopfamily = opcfamily

JOIN pg_operator opr ON opr.oid = amopopr

WHERE amname = 'gin'

AND opcname = 'gin_trgm_ops'

ORDER BY amopstrategy;

amopopr | oprcode

−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

%(text,text) | similarity_op

~~(text,text) | textlike

~~*(text,text) | texticlike

~(text,text) | textregexeq

~*(text,text) | texticregexeq

%>(text,text) | word_similarity_commutator_op

%>>(text,text) | strict_word_similarity_commutator_op

=(text,text) | texteq

(8 rows)

regular expressions

LIKE and ILIKE

To perform fuzzy comparison,we can define the distance between strings as a ratio

of common trigrams to the total number of trigrams in the query string. But as I

have already shown, ��� does not support ordering operators, so all operators in

the class must be Boolean. Therefore, for %, %>, and %>> operators that imple-

ment strategies of fuzzy comparison, the consistency function returns true if the

computed distance does not exceed the defined threshold.

581

Chapter 28 GIN

For = and ���� operators, the consistency function demands that the value con-

tains all the trigrams of the query string. Matching a document against a regular

expression requires a much more complex check.

In any case, trigram search is always fuzzy, and the results have to be rechecked.

28.4 Indexing Arrays

The array data type is also supported by ���. Built over array elements, a ��� index

can be used to quickly determine whether an array overlaps with or is contained in

another array:

=> SELECT amopopr::regoperator, oprcode::regproc, amopstrategy

FROM pg_am am

JOIN pg_opclass opc ON opcmethod = am.oid

JOIN pg_amop amop ON amopfamily = opcfamily

JOIN pg_operator opr ON opr.oid = amopopr

WHERE amname = 'gin'

AND opcname = 'array_ops'

ORDER BY amopstrategy;

amopopr | oprcode | amopstrategy

−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−

&&(anyarray,anyarray) | arrayoverlap | 1

@>(anyarray,anyarray) | arraycontains | 2

<@(anyarray,anyarray) | arraycontained | 3

=(anyarray,anyarray) | array_eq | 4

(4 rows)

As an example, let’s take the routes view of the demo database that shows the in-

formation on flights. The days_of_week column is an array of days of the week on

which flights are performed. To build an index, we first have to materialize the

view:

=> CREATE TABLE routes_tbl AS SELECT * FROM routes;

SELECT 710

=> CREATE INDEX ON routes_tbl USING gin(days_of_week);

Let’s use the created index to select the flights that depart on Tuesdays, Thursdays,

and Sundays. I turn off sequential scanning; otherwise, the planner would not use

the index for such a small table:

582

28.4 Indexing Arrays

=> SET enable_seqscan = off;

=> EXPLAIN (costs off) SELECT * FROM routes_tbl

WHERE days_of_week = ARRAY[2,4,7];

QUERY PLAN

−−−

Bitmap Heap Scan on routes_tbl

Recheck Cond: (days_of_week = '{2,4,7}'::integer[])

−> Bitmap Index Scan on routes_tbl_days_of_week_idx

Index Cond: (days_of_week = '{2,4,7}'::integer[])

(4 rows)

It turns out that there are eleven such flights:

=> SELECT flight_no, departure_airport, arrival_airport,

days_of_week

FROM routes_tbl

WHERE days_of_week = ARRAY[2,4,7];

flight_no | departure_airport | arrival_airport | days_of_week

−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−

PG0023 | OSW | KRO | {2,4,7}

PG0123 | NBC | ROV | {2,4,7}

PG0155 | ARH | TJM | {2,4,7}

PG0260 | STW | CEK | {2,4,7}

PG0261 | SVO | GDZ | {2,4,7}

PG0310 | UUD | NYM | {2,4,7}

PG0370 | DME | KRO | {2,4,7}

PG0371 | KRO | DME | {2,4,7}

PG0448 | VKO | STW | {2,4,7}

PG0482 | DME | KEJ | {2,4,7}

PG0651 | UIK | KHV | {2,4,7}

(11 rows)

The built index contains only seven elements: integer numbers from � to � that

represent days of the week.

The query execution is quite similar to what I have shown before for the full-text

search. In this particular case, the search query is represented by a regular array

rather than by a special data type; it is assumed that the indexed array must con-

tain all the specified elements. An important distinction here is that the equality

condition also requires the indexed array to contain no other elements. The consis-

tency function1 knows about this requirement thanks to the strategy number, but

it cannot verify that there are no unwanted elements, so it requests the indexing

engine to recheck the results by the table:

1 backend/access/gin/ginarrayproc.c, ginarrayconsistent function

583

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/gin/ginarrayproc.c;hb=REL_14_STABLE

Chapter 28 GIN

=> EXPLAIN (analyze, costs off, timing off, summary off)

SELECT * FROM routes_tbl

WHERE days_of_week = ARRAY[2,4,7];

QUERY PLAN

−−−

Bitmap Heap Scan on routes_tbl (actual rows=11 loops=1)

Recheck Cond: (days_of_week = '{2,4,7}'::integer[])

Rows Removed by Index Recheck: 482

Heap Blocks: exact=16

−> Bitmap Index Scan on routes_tbl_days_of_week_idx (actual ro...

Index Cond: (days_of_week = '{2,4,7}'::integer[])

(6 rows)

It may be useful to extend the ��� index with additional columns. For example,

to enable search for the flights that depart on Tuesdays, Thursdays, and Sundays

from Moscow, the index lacks the departure_city column. But there are no operator

classes implemented for regular scalar data types:

=> CREATE INDEX ON routes_tbl USING gin(days_of_week, departure_city);

ERROR: data type text has no default operator class for access

method "gin"

HINT: You must specify an operator class for the index or define a

default operator class for the data type.

Such situations can be addressed by the btree_ginp. ��� extension. It adds ��� operator

classes that simulate regular �-tree processing by representing a scalar value as a

composite value with a single element.

=> CREATE EXTENSION btree_gin;

=> CREATE INDEX ON routes_tbl USING gin(days_of_week,departure_city);

=> EXPLAIN (costs off)

SELECT * FROM routes_tbl

WHERE days_of_week = ARRAY[2,4,7]

AND departure_city = 'Moscow';

QUERY PLAN

−−−

Bitmap Heap Scan on routes_tbl

Recheck Cond: ((days_of_week = '{2,4,7}'::integer[]) AND

(departure_city = 'Moscow'::text))

−> Bitmap Index Scan on routes_tbl_days_of_week_departure_city...

Index Cond: ((days_of_week = '{2,4,7}'::integer[]) AND

(departure_city = 'Moscow'::text))

(6 rows)

584

28.5 Indexing JSON

=> RESET enable_seqscan;

The remark made about btree_gist holds true for btree_gin as well: a �-tree is much

more efficientwhen it comes to comparison operations, so itmakes sense to use the

btree_gin extension only when a ��� index is really needed. For instance, a search

by less than or less than or equal to conditions can be performed by a backward scan

in a �-tree, but not in ���.

28.5 Indexing JSON

One more non-atomic data type with built-in ��� support is jsonb.1 It offers a

whole range of operators for ����, and some of them can perform faster using ���.

There are two operator classes that extract different sets of elements from a ����

document:

=> SELECT opcname

FROM pg_am am

JOIN pg_opclass opc ON opcmethod = am.oid

WHERE amname = 'gin'

AND opcintype = 'jsonb'::regtype;

opcname

−−−−−−−−−−−−−−−−

jsonb_ops

jsonb_path_ops

(2 rows)

jsonb_ops Operator Class

The jsonb_ops operator class is the default one. All the keys, values, and array

elements of the original ����document are converted into index entries.2 It speeds

up queries that check for inclusion of ���� values (@>), existence of keys (?, ?|, and

?&), or ���� path matches (@? and@@):

1 postgresql.org/docs/14/datatype-json.html
2 backend/utils/adt/jsonb_gin.c, gin_extract_jsonb function

585

https://postgresql.org/docs/14/datatype-json.html
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/utils/adt/jsonb_gin.c;hb=REL_14_STABLE

Chapter 28 GIN

=> SELECT amopopr::regoperator, oprcode::regproc, amopstrategy

FROM pg_am am

JOIN pg_opclass opc ON opcmethod = am.oid

JOIN pg_amop amop ON amopfamily = opcfamily

JOIN pg_operator opr ON opr.oid = amopopr

WHERE amname = 'gin'

AND opcname = 'jsonb_ops'

ORDER BY amopstrategy;

amopopr | oprcode | amopstrategy

−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−

@>(jsonb,jsonb) | jsonb_contains | 7

?(jsonb,text) | jsonb_exists | 9

?|(jsonb,text[]) | jsonb_exists_any | 10

?&(jsonb,text[]) | jsonb_exists_all | 11

@?(jsonb,jsonpath) | jsonb_path_exists_opr | 15

@@(jsonb,jsonpath) | jsonb_path_match_opr | 16

(6 rows)

Let’s convert several rows of the routes view into the ���� format:

=> CREATE TABLE routes_jsonb AS

SELECT to_jsonb(t) route

FROM (

SELECT departure_airport_name, arrival_airport_name, days_of_week

FROM routes

ORDER BY flight_no

LIMIT 4

) t;

=> SELECT ctid, jsonb_pretty(route) FROM routes_jsonb;

ctid | jsonb_pretty

−−−−−−−+−−−

(0,1) | { +

| "days_of_week": [+

| 6 +

|], +

| "arrival_airport_name": "Surgut Airport", +

| "departure_airport_name": "Ust−Ilimsk Airport" +

| }

(0,2) | { +

| "days_of_week": [+

| 7 +

|], +

| "arrival_airport_name": "Ust−Ilimsk Airport", +

| "departure_airport_name": "Surgut Airport" +

| }

586

28.5 Indexing JSON

(0,3) | { +

| "days_of_week": [+

| 2, +

| 6 +

|], +

| "arrival_airport_name": "Sochi International Airport", +

| "departure_airport_name": "Ivanovo South Airport" +

| }

(0,4) | { +

| "days_of_week": [+

| 3, +

| 7 +

|], +

| "arrival_airport_name": "Ivanovo South Airport", +

| "departure_airport_name": "Sochi International Airport"+

| }

(4 rows)

=> CREATE INDEX ON routes_jsonb USING gin(route);

The created index can be illustrated as follows:

arrival_airport_name Ivanovo-Yuzhnyarrival_airport_name Ivanovo-Yuzhny

2 3 6 7 ar
ri
va
l_
ai
rp
or
t_
na

m
e

da
ys
_o
f_
w
ee
k

de
pa

rt
ur
e_
ai
rp
or
t_
na

m
e

Iv
an

ov
o-
Yu

zh
ny

So
ch
i

Su
rg
ut

U
st
-I
lim

sk

0,3 0,4 0,1

0,3

0,2

0,4

0,1

0,2

0,3

0,4

0,1

0,2

0,3

0,4

0,1

0,2

0,3

0,4

0,3

0,4

0,3

0,4

0,1

0,2

0,1

0,2

Let’s consider a query with condition route@> '{"days_of_week": [6]}', which selects

���� documents containing the specified path (that is, the flights performed on

Saturdays).

587

Chapter 28 GIN

The support function1 extracts the search keys from the ���� value of the search

query: “days_of_week” and “6”. These keys are searched in the element tree, and

the documents that contain at least one of them are checked by the consistency

function.2 For the contains strategy, this function demands that all the search

keys are available, but the results still have to be rechecked by the table: from

the point of view of an index, the specified path can also correspond to documents

like {"days_of_week": [2], "foo": [6]}.

jsonb_path_ops Operator Class

The second class called jsonb_path_ops contains fewer operators:

=> SELECT amopopr::regoperator, oprcode::regproc, amopstrategy

FROM pg_am am

JOIN pg_opclass opc ON opcmethod = am.oid

JOIN pg_amop amop ON amopfamily = opcfamily

JOIN pg_operator opr ON opr.oid = amopopr

WHERE amname = 'gin'

AND opcname = 'jsonb_path_ops'

ORDER BY amopstrategy;

amopopr | oprcode | amopstrategy

−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−

@>(jsonb,jsonb) | jsonb_contains | 7

@?(jsonb,jsonpath) | jsonb_path_exists_opr | 15

@@(jsonb,jsonpath) | jsonb_path_match_opr | 16

(3 rows)

If this class is used, the index will contain paths from the root of the document

to all the values and all the array elements rather than isolated ���� fragments.3

It makes the search much more precise and efficient, but there is no speedup for

operations with arguments represented by separate keys instead of paths.

As a path can be quite lengthy, it is not paths themselves but their hashes that

actually get indexed.

Let’s create an index for the same table using this operator class:

1 backend/utils/adt/jsonb_gin.c, gin_extract_jsonb_query function
2 backend/utils/adt/jsonb_gin.c, gin_consistent_jsonb function
3 backend/utils/adt/jsonb_gin.c, gin_extract_jsonb_path function

588

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/utils/adt/jsonb_gin.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/utils/adt/jsonb_gin.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/utils/adt/jsonb_gin.c;hb=REL_14_STABLE

28.5 Indexing JSON

=> CREATE INDEX ON routes_jsonb USING gin(route jsonb_path_ops);

The created index can be represented by the following tree:

HASH(...) HASH(...)HASH(...) HASH(...)

H
A
SH

(d
ep

ar
tu
re
_a
ir
po

rt
_n
am

e,
Iv
an

ov
o-
Yu

zh
ny

)

H
A
SH

(d
ep

ar
tu
re
_a
ir
po

rt
_n
am

e,
So

ch
i)

H
A
SH

(d
ep

ar
tu
re
_a
ir
po

rt
_n
am

e,
U
st
-I
lim

sk
)

H
A
SH

(d
ep

ar
tu
re
_a
ir
po

rt
_n
am

e,
Su

rg
ut

)

H
A
SH

(d
ay
s_
of
_w

ee
k,
3
)

H
A
SH

(a
rr
iv
al
_a
ir
po

rt
_n
am

e,
Su

rg
ut

)

H
A
SH

(a
rr
iv
al
_a
ir
po

rt
_n
am

e,
So

ch
i)

H
A
SH

(a
rr
iv
al
_a
ir
po

rt
_n
am

e,
U
st
-I
lim

sk
)

H
A
SH

(d
ay
s_
of
_w

ee
k,
7
)

H
A
SH

(a
rr
iv
al
_a
ir
po

rt
_n
am

e,
Iv
an

ov
o-
Yu

zh
ny

)

H
A
SH

(d
ay
s_
of
_w

ee
k,
6
)

H
A
SH

(d
ay
s_
of
_w

ee
k,
2
)

0,3 0,4 0,1 0,2 0,4 0,1 0,3 0,2 0,2

0,4

0,4 0,1

0,3

0,3

When executing a query with the same condition route @> '{"days_of_week": [6]}',

the support function1 extracts the whole path “days_of_week, �” rather than its

separate components. The ���s of the two matching documents will be found in

the element tree right away.

Clearly, these entries will be checked by the consistency function2 and then

rechecked by the indexing engine (to rule out hash collisions, for example). But

the search through the tree is much more efficient, so it makes sense to always

choose the jsonb_path_ops class if the index support provided by its operators is

sufficient for queries.

1 backend/utils/adt/jsonb_gin.c, gin_extract_jsonb_query_path function
2 backend/utils/adt/jsonb_gin.c, gin_consistent_jsonb_path function

589

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/utils/adt/jsonb_gin.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/utils/adt/jsonb_gin.c;hb=REL_14_STABLE

Chapter 28 GIN

28.6 Indexing Other Data Types

G�� support via extensions is also provided for the following data types:

Arrays of integers. The intarray extension adds the gin__int_ops operator class for

integer arrays. It is very similar to the standard array_ops operator class, but it

supports thematch operator@@,whichmatches a document against a search

query.

Key–value storage. The hstore extension implements a storage for key–value pairs

and provides the gin_hstore_ops operator class. Both keys and values get in-

dexed.

JSON query language. An external jsquery extension provides its own query lan-

guage and ��� index support for ����.

After the ���:���� standard was adopted and the ���/���� query language

was implemented in Postgre���,v. �� the standard built-in capabilities seem to be

a better choice.

590

29
BRIN

29.1 Overview

Unlike other indexes that are optimized to quickly find the required rows, ����1 is

designed to filter out unnecessary rows. This access method was created primarily

for large tables of several terabytes and up, so a smaller index size takes priority

over search accuracy.

To speed up search, the whole table is split into ranges, hence the name: Block

Range Index. Each range comprises several pages. The index does not store ���s,

keeping only a summary on the data of each range. For ordinal data types, it is

the minimal and the maximal values in the simplest case, but different operator

classes may collect different information on values in a range.

The number of pages in a range is defined at the time of the index creation based

on the value of the 128pages_per_range storage parameter.

If a query condition references an indexed column, all the ranges that are guaran-

teed to have no matches can be skipped. The pages of all the other ranges are

returned by the index as a lossy p. ���bitmap; all the rows of these pages have to be

rechecked.

Thus, ���� works well for columns with localized values (that is, for columns in

which values stored close to each other have similar summary information prop-

erties). For ordinal data types, it means that values must be stored in ascending

or descending order, that is, have high correlation p. ���between their physical location

1 postgresql.org/docs/14/brin.html

backend/access/brin/README

591

https://postgresql.org/docs/14/brin.html
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/brin/README;hb=REL_14_STABLE

Chapter 29 BRIN

and the logical order defined by the greater than and less than operations. For other

types of summary information, “similar properties” may vary.

It will not be wrong to think of ���� as an accelerator of sequential heap scans

rather than an index in the conventional sense of the word. It can be regarded as

an alternative to partitioning, with each range representing a virtual partition.

29.2 Example

Our demo database contains no tables that are large enough for ����, but we can

imagine that analytical reports demand that we have a denormalized table con-

taining summary information on all the departed and arrived flights of a particular

airport, down to the occupied seats. The data for each airport is updated daily, as

soon as it is midnight in the corresponding timezone. The added data is neither

updated nor deleted.

The table looks as follows:

CREATE TABLE flights_bi(

airport_code char(3),

airport_coord point, -- airport coordinates

airport_utc_offset interval, -- timezone

flight_no char(6),

flight_type text, -- departure or arrival

scheduled_time timestamptz,

actual_time timestamptz,

aircraft_code char(3),

seat_no varchar(4),

fare_conditions varchar(10), -- travel class

passenger_id varchar(20),

passenger_name text

);

Data loading can be emulated using nested loops:1 the outer loop will correspond

to days (the demo database stores annual data), while the inner loop will be based

on timezones. As a result, the loaded data will be more or less ordered at least by

time and airports, even though it is not explicitly sorted within the loop.

1 edu.postgrespro.ru/internals-14/flights_bi.sql

592

https://edu.postgrespro.ru/internals-14/flights_bi.sql

29.2 Example

I will load an existing copy of the database that takes roughly � �� and contains

about �� million rows:1

postgres$ pg_restore -d demo -c flights_bi.dump

=> ANALYZE flights_bi;

=> SELECT count(*) FROM flights_bi;

count

−−−−−−−−−−

30517076

(1 row)

=> SELECT pg_size_pretty(pg_total_relation_size('flights_bi'));

pg_size_pretty

−−−−−−−−−−−−−−−−

4129 MB

(1 row)

We can hardly call it a large table, but this data volume will be enough to demon-

strate how ���� works. I will create an index in advance:

=> CREATE INDEX ON flights_bi USING brin(scheduled_time);

=> SELECT pg_size_pretty(pg_total_relation_size(

'flights_bi_scheduled_time_idx'

));

pg_size_pretty

−−−−−−−−−−−−−−−−

184 kB

(1 row)

It takes very little space with the default settings.

A �-tree index is a thousand times bigger, even if data deduplication v. ��is enabled.

True, its efficiency is also much higher, but an additional volume can turn out to

be unaffordable luxury for really large tables.

=> CREATE INDEX flights_bi_btree_idx ON flights_bi(scheduled_time);

=> SELECT pg_size_pretty(pg_total_relation_size(

'flights_bi_btree_idx'

));

1 edu.postgrespro.ru/internals-\oldstylenums{14}/flights_bi.dump.

593

https://edu.postgrespro.ru/internals-\oldstylenums {14}/flights_bi.dump

Chapter 29 BRIN

pg_size_pretty

−−−−−−−−−−−−−−−−

210 MB

(1 row)

=> DROP INDEX flights_bi_btree_idx;

29.3 Page Layout

The zero page of a ���� index is themetapage that keeps information on the index

structure.

At a certain offset from the metadata, there are pages with summary information.

Each index entry in such a page contains a summary of a particular block range.

The space between the metapage and the summary information is taken by the

rangemap,which is sometimes also referred to as a reversemap (hence the common

revmap abbreviation). It is effectively an array of pointers to the corresponding

index rows; the index number in this array corresponds to the range number.

metapage

revmap

1 .. 10 11 .. 20 21 .. 301 .. 10 11 .. 20 21 .. 30 71 .. 80 31 .. 40 41 .. 5071 .. 80 31 .. 40 41 .. 50 51 .. 60 61 .. 7051 .. 60 61 .. 70

As the table is expanding, the size of the rangemap also grows. If themap does not

fit the allotted pages, it overtakes the next page, and all the index entries previously

located in this page are transferred to other pages. Since a page can accommodate

many pointers, such transfers are quite rare.

594

29.3 Page Layout

B��� index pages can be displayed by the pageinspect extension, as usual. The

metadata includes the size of the range and the number of pages reserved for the

range map:

=> SELECT pagesperrange, lastrevmappage

FROM brin_metapage_info(get_raw_page(

'flights_bi_scheduled_time_idx', 0

));

pagesperrange | lastrevmappage

−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−

128 | 4

(1 row)

Here the range map takes four pages, from the first to the fourth one. We can take

a look at the pointers to index entries containing summarized data:

=> SELECT *

FROM brin_revmap_data(get_raw_page(

'flights_bi_scheduled_time_idx', 1

));

pages

−−−−−−−−−−

(6,197)

(6,198)

(6,199)

...

(6,195)

(6,196)

(1360 rows)

If the range is not summarized yet, the pointer in the range map is ����.

And here are the summaries for several ranges:

=> SELECT itemoffset, blknum, value

FROM brin_page_items(

get_raw_page('flights_bi_scheduled_time_idx', 6),

'flights_bi_scheduled_time_idx'

)

ORDER BY blknum

LIMIT 3 \gx

595

Chapter 29 BRIN

−[RECORD 1]−−

itemoffset | 197

blknum | 0

value | {2016−08−15 02:45:00+03 .. 2016−08−15 16:20:00+03}

−[RECORD 2]−−

itemoffset | 198

blknum | 128

value | {2016−08−15 05:50:00+03 .. 2016−08−15 18:55:00+03}

−[RECORD 3]−−

itemoffset | 199

blknum | 256

value | {2016−08−15 07:15:00+03 .. 2016−08−15 18:50:00+03}

29.4 Search

If a query condition is supported by the ���� index,1 the executor scans the range

map and the summary information for each range. If the data in a rangemaymatch

the search key, all the pages that belong to this range are added to the bitmap. Since

���� does not keep ��s of separate tuples, the bitmap is always lossy.

Matching the data against the search key is performed by the consistency function,

which interprets range summary information. Non-summarized ranges are always

added to the bitmap.

The received bitmap is used to scan the table in the usual mannerp. ��� . It is important

to mention that heap page reads happen sequentially, block range by block range,

and prefetching is employed.

29.5 Summary Information Updates

Value Insertion

As a new tuple is added into a heap page, the summary information in the corre-

sponding index range is updated.2 The range number is calculated based on the

1 backend/access/brin/brin.c, bringetbitmap function
2 backend/access/brin/brin.c, brininsert function

596

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/brin/brin.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/brin/brin.c;hb=REL_14_STABLE

29.5 Summary Information Updates

page number using simple arithmetic operations, and the summary information is

then located by the range map.

To determine whether the current summary information has to be expanded, the

addition function is employed. If an expansion is required and the page has enough

free space, it is done in-place (without adding a new index entry).

Suppose we have added a tuple with value �� to page ��. The range number is cal-

culated by integer division of page number by the size of the range. Assuming that

the range size equals four pages, we get range number �; since range numbering

is zero-based, we take the fourth pointer in the range map. The minimal value in

this range is ��, the maximal one is ��. The added value falls outside these limits,

so the maximal value is increased:

metapage

revmap

1 .. 10 11 .. 20 21 .. 301 .. 10 11 .. 20 21 .. 30 71 .. 80 31 .. 42 41 .. 5071 .. 80 31 .. 42 41 .. 50 51 .. 60 61 .. 7051 .. 60 61 .. 70

If an in-place update is impossible, a new entry is added, and the range map is

modified.

Range Summarization

Everything said above applies to scenarios when a new tuple appears in an already

summarized range. When an index is being built, all the existing ranges are sum-

marized, but as the table grows, new pages may fall outside these ranges.

If an index is created with the offautosummarize storage parameter enabled, the new

range will be summarized at once. But in data warehouses, where rows are usually

added in large batches rather than one by one, this mode can seriously slow down

insertion.

597

Chapter 29 BRIN

By default, new ranges are not summarized right away. It does not affect index

correctness because ranges with no summary information are always scanned.

Summarization is performed asynchronously, either during table vacuumingp. ��� or

when initiatedmanually by calling the brin_summarize_new_values function (or the

brin_summarize_range function that processes a single range).

Range summarization1 does not lock the table for updates. At the beginning of this

process, a placeholder entry is inserted into the index for this range. If the data in

the range is changed while this range is being scanned, the placeholder will be

updated with the summary information on these changes. Then the union function

will unite this data with the summary information on the corresponding range.

In theory, summary information could sometimes shrink after some rows are

deleted. But while �i�� indexes can redistribute datap. ��� after a page split, summary

information of ���� indexes never shrinks and can only get wider. Shrinking is

usually not required here because a data storage is typically used only for ap-

pending new data. You can manually delete summary information by calling the

brin_desummarize_range function for this range to be summarized again, but there

is no clue as to which ranges might benefit from it.

Thus, ���� is primarily targeted at tables of very large size, which either have min-

imal updates that add new rows mostly to the end of the file, or are not updated at

all. It is mainly used in data warehouses for building analytical reports.

29.6 Minmax Classes

For data types that allow comparing values, summary information includes at least

the maximal and minimal values. The corresponding operator classes contain the

wordminmax in their names:2

=> SELECT opcname

FROM pg_am am

JOIN pg_opclass opc ON opcmethod = am.oid

WHERE amname = 'brin'

AND opcname LIKE '%minmax_ops'

ORDER BY opcname;

1 backend/access/brin/brin.c, summarize_range function
2 backend/access/brin/brin_minmax.c

598

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/brin/brin.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/brin/brin_minmax.c;hb=REL_14_STABLE

29.6 Minmax Classes

opcname

−−−−−−−−−−−−−−−−−−−−−−−−

bit_minmax_ops

bpchar_minmax_ops

bytea_minmax_ops

char_minmax_ops

...

timestamptz_minmax_ops

timetz_minmax_ops

uuid_minmax_ops

varbit_minmax_ops

(26 rows)

Here are the support functions of these operator classes:

=> SELECT amprocnum, amproc::regproc

FROM pg_am am

JOIN pg_opclass opc ON opcmethod = am.oid

JOIN pg_amproc amop ON amprocfamily = opcfamily

WHERE amname = 'brin'

AND opcname = 'numeric_minmax_ops'

ORDER BY amprocnum;

amprocnum | amproc

−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−

1 | brin_minmax_opcinfo

2 | brin_minmax_add_value

3 | brin_minmax_consistent

4 | brin_minmax_union

(4 rows)

The first function returns the operator class metadata, and all the other functions

have already been described: they insert new values, check consistency, and per-

form union operations.

The minmax class includes the same comparison operators that we have seen for

�-trees p. ���:

=> SELECT amopopr::regoperator, oprcode::regproc, amopstrategy

FROM pg_am am

JOIN pg_opclass opc ON opcmethod = am.oid

JOIN pg_amop amop ON amopfamily = opcfamily

JOIN pg_operator opr ON opr.oid = amopopr

WHERE amname = 'brin'

AND opcname = 'numeric_minmax_ops'

ORDER BY amopstrategy;

599

Chapter 29 BRIN

amopopr | oprcode | amopstrategy

−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−+−−−−−−−−−−−−−−

<(numeric,numeric) | numeric_lt | 1

<=(numeric,numeric) | numeric_le | 2

=(numeric,numeric) | numeric_eq | 3

>=(numeric,numeric) | numeric_ge | 4

>(numeric,numeric) | numeric_gt | 5

(5 rows)

Choosing Columns to be Indexed

Which columns does it make sense to index using this operator class? As men-

tioned earlier, such indexes work well if the physical location of rows correlates

with the logical order of values.

Let’s check it for the above example.

=> SELECT attname, correlation, n_distinct

FROM pg_stats

WHERE tablename = 'flights_bi'

ORDER BY correlation DESC NULLS LAST;

attname | correlation | n_distinct

−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−

scheduled_time | 0.9999949 | 25926

actual_time | 0.9999948 | 34469

fare_conditions | 0.7976897 | 3

flight_type | 0.4981733 | 2

airport_utc_offset | 0.4440067 | 11

aircraft_code | 0.19249801 | 8

airport_code | 0.061483838 | 104

seat_no | 0.0024594965 | 461

flight_no | 0.0020146023 | 710

passenger_id | −0.00046121294 | 2.610987e+06

passenger_name | −0.012388787 | 8618

airport_coord | | 0

(12 rows)

The data is ordered by time (both scheduled and actual time; there is little dif-

ference, if any): new entries are added in chronological order, and as the data is

neither updated nor deleted, all the rows get into the main forkp. �� of the table se-

quentially, one after another.

600

29.6 Minmax Classes

Columns fare_conditions, flight_type, and airport_utc_offset have relatively high cor-

relation, but they store too few distinct values.

The correlation in other columns is too low for their indexing with the minmax

operator class to be of any interest.

Range Size and Search Efficiency

An appropriate range size can be determined based on the number of pages used

to store particular values.

Let’s take a look at the scheduled_time column and get the information on all the

flights performed in �� hours. We first have to find out how many table pages are

taken by the data related to this time interval.

To get this number, we can use the fact that a ��� consists of a page number and an

offset. Unfortunately, there is no built-in function to break down a ��� into these

two components, so we will have to write our own clumsy function to perform type

casting via a text representation:

=> CREATE FUNCTION tid2page(t tid) RETURNS integer

LANGUAGE sql

RETURN (t::text::point)[0]::integer;

Now we can see how days are distributed through the table:

=> SELECT min(numblk), round(avg(numblk)) avg, max(numblk)

FROM (

SELECT count(distinct tid2page(ctid)) numblk

FROM flights_bi

GROUP BY scheduled_time::date

) t;

min | avg | max

−−−−−−+−−−−−−+−−−−−−

1192 | 1447 | 1512

(1 row)

As we can notice, the data distribution is not quite uniform. With a standard range

size of ��� pages, each day will take from � to �� ranges. While fetching the data

for a particular day, the index scan will return both the rows that are really needed

and some rows related to other days that got into the same ranges. The bigger

601

Chapter 29 BRIN

the range size, the more extra boundary values will be read; we can change their

number by reducing or increasing the range size.

Let’s try out a query for some particular day (I have already created an index with

the default settings). For simplicity, I will forbid parallel execution:

=> SET max_parallel_workers_per_gather = 0;

=> \set d '2016-08-15 02:45:00+03'

=> EXPLAIN (analyze, buffers, costs off, timing off, summary off)

SELECT *

FROM flights_bi

WHERE scheduled_time >= :'d'::timestamptz

AND scheduled_time < :'d'::timestamptz + interval '1 day';

QUERY PLAN

−−−

Bitmap Heap Scan on flights_bi (actual rows=81964 loops=1)

Recheck Cond: ((scheduled_time >= '2016−08−15 02:45:00+03'::ti...

Rows Removed by Index Recheck: 11606

Heap Blocks: lossy=1536

Buffers: shared hit=1561

−> Bitmap Index Scan on flights_bi_scheduled_time_idx

(actual rows=15360 loops=1)

Index Cond: ((scheduled_time >= '2016−08−15 02:45:00+03'::...

Buffers: shared hit=25

Planning:

Buffers: shared hit=1

(11 rows)

We can define an efficiency factor of a ���� index for a particular query as a ratio

between the number of pages skipped in an index scan and the total number of

pages in the table. If the efficiency factor is zero, the index access degrades to

sequential scanning (without taking overhead costs into accountp. ���). The higher the

efficiency factor, the fewer pages have to be read. But as some pages contain the

data to be returned and cannot be skipped, the efficiency factor is always smaller

than one.

In this particular case, the efficiency factor is 528417−1561
528417

≈ �.���, where ���,��� is

the number of pages in the table.

However, we cannot draw any meaningful conclusions based on a single value.

Even if we had uniform data and ideal correlation, the efficiency would still vary

because, at the very least, range boundaries will not match page boundaries. We

602

29.6 Minmax Classes

can get the full picture only if we treat the efficiency factor as a random value and

analyze its distribution.

For our example,we can select all the different days of the year, check the execution

plan for each value, and calculate statistics based on this selection. We can easily

automate this process because the ������� command can return the results in the

���� format, which is convenient to parse. I will not provide all the code here, but

the following snippet contains all the important details:

=> DO $$

DECLARE

plan jsonb;

BEGIN

EXECUTE

'EXPLAIN (analyze, buffers, timing off, costs off, format json)

SELECT * FROM flights_bi

WHERE scheduled_time >= $1

AND scheduled_time < $1 + interval ''1 day'''

USING '2016-08-15 02:45:00+03'::timestamptz

INTO plan;

RAISE NOTICE 'shared hit=%, read=%',

plan -> 0 -> 'Plan' ->> 'Shared Hit Blocks',

plan -> 0 -> 'Plan' ->> 'Shared Read Blocks';

END;

$$;

NOTICE: shared hit=1561, read=0

DO

The results can be visually displayed as a box plot, also known as a “box-and-

whiskers.” The whiskers here denote the first and fourth quartiles (that is, the right

whisker gets ��% of the largest values, while the left one gets ��% of the small-

est values). The box itself holds the remaining ��% of values and has the median

value marked. What is more important, this compact representation enables us to

visually compare different results. The following illustration shows the efficiency

factor distribution for the default range size and for two other sizes that are four

times larger and smaller.

As we could have expected, the search accuracy and efficiency are high even for

rather large ranges.

The dashed line here marks the average value of the maximal efficiency factor pos-

sible for this query, assuming that one day takes roughly 1

365
of the table.

603

Chapter 29 BRIN

0,990 0,992 0,994 0,996 0,998 1,000

efficiency
factor

32 pages/range,
529 kB

128 pages/range,
184 kB

512 pages/range,
72 kB

Note that the rise in efficiency comes at the expense of the index size increase.

B��� is quite flexible in letting you find the balance between the two.

Properties

B��� properties are hardwired and do not depend on operator classes.

Access Method Properties

=> SELECT a.amname, p.name, pg_indexam_has_property(a.oid, p.name)

FROM pg_am a, unnest(array[

'can_order', 'can_unique', 'can_multi_col',

'can_exclude', 'can_include'

]) p(name)

WHERE a.amname = 'brin';

amname | name | pg_indexam_has_property

−−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−

brin | can_order | f

brin | can_unique | f

brin | can_multi_col | t

brin | can_exclude | f

brin | can_include | f

(5 rows)

Obviously, neither sorting nor uniqueness properties are supported. Since a ����

index always returns a bitmap, exclusion constraints are not supported either. Nei-

ther do additional ������� columns make any sense, as even indexing keys are not

stored in ���� indexes.

604

29.6 Minmax Classes

However, we can create a multicolumn ���� index. In this case, summary informa-

tion for each column is collected and stored in a separate index entry, but they still

have a common range mapping. Such an index is useful if the same range size is

applicable to all the indexed columns.

Alternatively, we can create separate ���� indexes for several columns and take

advantage of the fact that bitmaps p. ���can be merged together. For example:

=> CREATE INDEX ON flights_bi USING brin(airport_utc_offset);

=> EXPLAIN (analyze, costs off, timing off, summary off)

SELECT *

FROM flights_bi

WHERE scheduled_time >= :'d'::timestamptz

AND scheduled_time < :'d'::timestamptz + interval '1 day'

AND airport_utc_offset = '08:00:00';

QUERY PLAN

−−−

Bitmap Heap Scan on flights_bi (actual rows=1658 loops=1)

Recheck Cond: ((scheduled_time >= '2016−08−15 02:45:00+03'::ti...

Rows Removed by Index Recheck: 14077

Heap Blocks: lossy=256

−> BitmapAnd (actual rows=0 loops=1)

−> Bitmap Index Scan on flights_bi_scheduled_time_idx (act...

Index Cond: ((scheduled_time >= '2016−08−15 02:45:00+0...

−> Bitmap Index Scan on flights_bi_airport_utc_offset_idx ...

Index Cond: (airport_utc_offset = '08:00:00'::interval)

(9 rows)

Index-Level Properties

=> SELECT p.name, pg_index_has_property(

'flights_bi_scheduled_time_idx', p.name

)

FROM unnest(array[

'clusterable', 'index_scan', 'bitmap_scan', 'backward_scan'

]) p(name);

name | pg_index_has_property

−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−

clusterable | f

index_scan | f

bitmap_scan | t

backward_scan | f

(4 rows)

605

Chapter 29 BRIN

Obviously, bitmap scanning is the only supported access type.

Lack of clusterization may seem puzzling. Since ���� is sensitive to the physical

order of rows, it is quite logical to assume that it should support reordering, which

wouldmaximize its efficiency. But clusterization of large tables is anyway a luxury,

taking into account all the processing and extra disk space required to rebuild a

table. Besides, as the example of the flights_bi table shows, some ordering in data

storages can occur naturally.

Column-Level Properties

=> SELECT p.name, pg_index_column_has_property(

'flights_bi_scheduled_time_idx', 1, p.name

)

FROM unnest(array[

'orderable', 'distance_orderable', 'returnable',

'search_array', 'search_nulls'

]) p(name);

name | pg_index_column_has_property

−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

orderable | f

distance_orderable | f

returnable | f

search_array | f

search_nulls | t

(5 rows)

The only available column-level property is ���� support. To track ���� values in

a range, summary information provides a separate attribute:

=> SELECT hasnulls, allnulls, value

FROM brin_page_items(

get_raw_page('flights_bi_airport_utc_offset_idx', 6),

'flights_bi_airport_utc_offset_idx'

)

WHERE itemoffset= 1;

hasnulls | allnulls | value

−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−

f | f | {03:00:00 .. 03:00:00}

(1 row)

606

29.7 Minmax-Multi Classes

29.7 Minmax-Multi Classes v. ��

The established correlation can be easily disrupted by data updates. The reason is

not an actual modification of a particular value but rather the ���� design itself p. ��:

an old version of a row may be deleted in one page, while its new version may be

inserted into any location that is currently free, so the original row order cannot

be preserved.

To minimize this effect to some extent, we can reduce the value of the fillfactor

storage parameter to leave more space in the page for future updates. But is it

really worth increasing the size of an already huge table? Besides, deletions will

anyway free some space in existing pages, thus preparing traps for new tuples that

would otherwise get to the end of the file.

Such a situation can be easily emulated. Let’s delete �.�% of randomly chosen

rows and vacuum the table to clean up some space for new tuples:

=> WITH t AS (

SELECT ctid

FROM flights_bi TABLESAMPLE BERNOULLI(0.1) REPEATABLE(0)

)

DELETE FROM flights_bi

WHERE ctid IN (SELECT ctid FROM t);

DELETE 30180

=> VACUUM flights_bi;

Now let’s add some data for a new day in one of the timezones. I will simply copy

the data of the previous day:

=> INSERT INTO flights_bi

SELECT airport_code, airport_coord, airport_utc_offset,

flight_no, flight_type, scheduled_time + interval '1 day',

actual_time + interval '1 day', aircraft_code, seat_no,

fare_conditions, passenger_id, passenger_name

FROM flights_bi

WHERE date_trunc('day', scheduled_time) = '2017-08-15'

AND airport_utc_offset = '03:00:00';

INSERT 0 40532

607

Chapter 29 BRIN

The performed deletion was enough to free some space in all or almost all the

ranges. Getting into pages located somewhere in the middle of the file, new tuples

have automatically expanded the ranges. For example, the summary information

related to the first range used to cover less than a day, but now it comprises the

whole year:

=> SELECT value

FROM brin_page_items(

get_raw_page('flights_bi_scheduled_time_idx', 6),

'flights_bi_scheduled_time_idx'

)

WHERE blknum = 0;

value

−−

{2016−08−15 02:45:00+03 .. 2017−08−16 09:35:00+03}

(1 row)

The smaller the date specified in the query, the more ranges have to be scanned.

The graph shows the magnitude of the disaster:

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

efficiency
factor

128 pages/range,
248 kB

To address this issue, we have to make the summary information a bit more so-

phisticated: instead of a single continuous range, we have to store several smaller

ones that cover all the values when taken together. Then one of the ranges can

cover the main set of data, while the rest will handle occasional outliers.

Such functionality is provided byminmax-multi operator classes:1

=> SELECT opcname

FROM pg_am am

JOIN pg_opclass opc ON opcmethod = am.oid

WHERE amname = 'brin'

AND opcname LIKE '%minmax_multi_ops'

ORDER BY opcname;

1 backend/access/brin/brin_minmax_multi.c

608

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/brin/brin_minmax_multi.c;hb=REL_14_STABLE

29.7 Minmax-Multi Classes

opcname

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

date_minmax_multi_ops

float4_minmax_multi_ops

float8_minmax_multi_ops

inet_minmax_multi_ops

...

time_minmax_multi_ops

timestamp_minmax_multi_ops

timestamptz_minmax_multi_ops

timetz_minmax_multi_ops

uuid_minmax_multi_ops

(19 rows)

As compared tominmax operator classes,minmax-multi classes have onemore sup-

port function that computes the distance between values; it is used to determine

the range length, which the operator class strives to reduce:

=> SELECT amprocnum, amproc::regproc

FROM pg_am am

JOIN pg_opclass opc ON opcmethod = am.oid

JOIN pg_amproc amop ON amprocfamily = opcfamily

WHERE amname = 'brin'

AND opcname = 'numeric_minmax_multi_ops'

ORDER BY amprocnum;

amprocnum | amproc

−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

1 | brin_minmax_multi_opcinfo

2 | brin_minmax_multi_add_value

3 | brin_minmax_multi_consistent

4 | brin_minmax_multi_union

5 | brin_minmax_multi_options

11 | brin_minmax_multi_distance_numeric

(6 rows)

The operators of such classes are absolutely the same as those of the minmax

classes.

Minmax-multi classes can take the 32values_per_range parameter, which defines the

maximal allowed number of summarized values per range. A summarized value is

represented by two numbers (an interval), while a separate point requires just one.

If there are not enough values, some of the intervals are reduced.1

1 backend/access/brin/brin_minmax_multi.c, reduce_expanded_ranges function

609

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/brin/brin_minmax_multi.c;hb=REL_14_STABLE

Chapter 29 BRIN

Let’s build aminmax-multi index instead of the existing one. We will limit the num-

ber of allowed values per range to ��:

=> DROP INDEX flights_bi_scheduled_time_idx;

=> CREATE INDEX ON flights_bi USING brin(

scheduled_time timestamptz_minmax_multi_ops(

values_per_range = 16

)

);

The graph shows that the new index brings the efficiency back to the original level.

Quite expectedly, it leads to an increase in the index size:

0,990 0,992 0,994 0,996 0,998 1,000

efficiency
factor

minmax-multi
656 kB

minmax
184 kB

29.8 Inclusion Classes

The difference betweenminmax and inclusion operator classes is roughly the same

as the difference between �-trees and �i�� indexes: the latter are designed for data

types that do not support comparison operations, although mutual alignment of

values still makes sense for them. Summary information for a particular range

provided by inclusion operator classes is represented by the bounding box of the

values in this range.

Here are these operator classes; they are not numerous:

=> SELECT opcname

FROM pg_am am

JOIN pg_opclass opc ON opcmethod = am.oid

WHERE amname = 'brin'

AND opcname LIKE '%inclusion_ops'

ORDER BY opcname;

610

29.8 Inclusion Classes

opcname

−−−−−−−−−−−−−−−−−−−−−

box_inclusion_ops

inet_inclusion_ops

range_inclusion_ops

(3 rows)

The list of support functions is extended by one more mandatory function that

merges two values, and by a bunch of optional ones:

=> SELECT amprocnum, amproc::regproc

FROM pg_am am

JOIN pg_opclass opc ON opcmethod = am.oid

JOIN pg_amproc amop ON amprocfamily = opcfamily

WHERE amname = 'brin'

AND opcname = 'box_inclusion_ops'

ORDER BY amprocnum;

amprocnum | amproc

−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−

1 | brin_inclusion_opcinfo

2 | brin_inclusion_add_value

3 | brin_inclusion_consistent

4 | brin_inclusion_union

11 | bound_box

13 | box_contain

(6 rows)

When dealing with values that can be compared, we relied on their correlation;

but for other data types, no such statistic is collected,1 so it is hard to predict the

efficiency of an inclusion-based ���� index.

What is worse, correlation greatly affects cost estimation of an index scan. If such

statistic is unavailable, it is taken as zero.2 Thus, the planner has no way to tell

between exact and fuzzy inclusion indexes, so it typically avoids using them alto-

gether.

Post��� collects v. �.�.�statistics on correlation of spatial data.

In this particular case, we can presume that it makes sense to build an index over

airport coordinates, as longitude must correlate with the timezone.

1 backend/commands/analyze.c, compute_scalar_stats function
2 backend/utils/adt/selfuncs.c, brincostestimate function

611

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/commands/analyze.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/utils/adt/selfuncs.c;hb=REL_14_STABLE

Chapter 29 BRIN

Unlike �i�� predicates, ���� summary information has the same type as the in-

dexed data; therefore, it is not so easy to build an index for points. But we can

create an expression index by converting points into dummy rectangles:

=> CREATE INDEX ON flights_bi USING brin(box(airport_coord))

WITH (pages_per_range = 8);

=> SELECT pg_size_pretty(pg_total_relation_size(

'flights_bi_box_idx'

));

pg_size_pretty

−−−−−−−−−−−−−−−−

3816 kB

(1 row)

An index built over timezones with the same range size takes approximately the

same volume (���� k�).

The operators included into this class are similar to �i�� operators. For example,

a ���� index can be used to speed up search for points in a certain area:

=> SELECT airport_code, airport_name

FROM airports

WHERE box(coordinates) <@ box '135,45,140,50';

airport_code | airport_name

−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−

KHV | Khabarovsk−Novy Airport

(1 row)

But as mentioned earlier, the planner refuses to use an index scan unless we turn

off sequential scanning:

=> EXPLAIN (costs off)

SELECT *

FROM flights_bi

WHERE box(airport_coord) <@ box '135,45,140,50';

QUERY PLAN

−−

Seq Scan on flights_bi

Filter: (box(airport_coord) <@ '(140,50),(135,45)'::box)

(2 rows)

=> SET enable_seqscan = off;

612

29.9 Bloom Classes

=> EXPLAIN (analyze, costs off, timing off, summary off)

SELECT *

FROM flights_bi

WHERE box(airport_coord) <@ box '135,45,140,50';

QUERY PLAN

−−−

Bitmap Heap Scan on flights_bi (actual rows=511414 loops=1)

Recheck Cond: (box(airport_coord) <@ '(140,50),(135,45)'::box)

Rows Removed by Index Recheck: 630756

Heap Blocks: lossy=19656

−> Bitmap Index Scan on flights_bi_box_idx (actual rows=196560...

Index Cond: (box(airport_coord) <@ '(140,50),(135,45)'::box)

(6 rows)

=> RESET enable_seqscan;

29.9 Bloom Classes v. ��

Operator classes based on the Bloom filter enable ���� usage for any data types

that support the equal to operation and have a hash function defined. They can

also be applied to regular ordinal types if values are localized in separate ranges

but their physical location has no correlation with the logical order.

The names of such operator classes contain the word bloom:1

=> SELECT opcname

FROM pg_am am

JOIN pg_opclass opc ON opcmethod = am.oid

WHERE amname = 'brin'

AND opcname LIKE '%bloom_ops'

ORDER BY opcname;

opcname

−−−−−−−−−−−−−−−−−−−−−−−

bpchar_bloom_ops

bytea_bloom_ops

char_bloom_ops

...

timestamptz_bloom_ops

timetz_bloom_ops

uuid_bloom_ops

(24 rows)

1 backend/access/brin/brin_bloom.c

613

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/brin/brin_bloom.c;hb=REL_14_STABLE

Chapter 29 BRIN

The classic Bloom filter is a data structure that enables you to quickly check

whether an element belongs to a set. This filter is very compact, but it allows false

positives: a set may be assumed to contain more elements than it actually does.

But what is more important, false negatives are ruled out: the filter cannot decide

that an element is not present in the set if it is actually there.

The filter is an array of m bits (also called a signature), which is originally filled

with zeros. We select k different hash functions to map any element of the set to k

bits of the signature. When an element is added to the set, each of the bits in the

signature is set to one. Consequently, if all the bits that correspond to an element

are set to one, the element may be present in the set; if there is at least one zero

bit, the element is guaranteed to be absent.

In the case of ���� indexes, the filter processes a set of values of an indexed col-

umn that belong to a particular range; the summary information for this range is

represented by the built Bloom filter.

The bloom extension1 provides its own index access method based on the Bloom filter. It

builds a filter for each table row and deals with a set of column values of each row. Such

an index is designed for indexing several columns at a time and can be used in adhoc

queries, when the columns to be referenced in filter conditions are not known in advance.

A ���� index can also be built on several columns,but its summary information will contain

several independent Bloom filters for each of these columns.

The accuracy of the Bloom filter depends on the signature length. In theoretical

terms, the optimal number of signature bits can be estimated atm = −n log2 p
ln 2

,where

n is the number of elements in the set and p is the probability of false positives.

These two settings can be adjusted using the corresponding operator class param-

eters:

•−0.1 n_distinct_per_range defines the number of elements in a set; in this case, it is

the number of distinct values in one range of an indexed column. This param-

eter value is interpreted just like statistics on distinct values:p. ��� negative values

indicate the fraction of rows in the range, not their absolute number.

1 postgresql.org/docs/14/bloom.html

614

https://postgresql.org/docs/14/bloom.html

29.9 Bloom Classes

• 0.01false_positive_rate defines the probability of false positives.

A near-zero value means that an index scan will almost certainly skip the

ranges that have no searched values. But it does not guarantee exact search,

as the scanned ranges will also contain extra rows that do notmatch the query.

Such behavior is due to range width and physical data location rather than to

the actual filter properties.

The list of support functions is extended by a hash function:

=> SELECT amprocnum, amproc::regproc

FROM pg_am am

JOIN pg_opclass opc ON opcmethod = am.oid

JOIN pg_amproc amop ON amprocfamily = opcfamily

WHERE amname = 'brin'

AND opcname = 'numeric_bloom_ops'

ORDER BY amprocnum;

amprocnum | amproc

−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−

1 | brin_bloom_opcinfo

2 | brin_bloom_add_value

3 | brin_bloom_consistent

4 | brin_bloom_union

5 | brin_bloom_options

11 | hash_numeric

(6 rows)

Since the Bloom filter is based on hashing, only the equality operator is supported:

=> SELECT amopopr::regoperator, oprcode::regproc, amopstrategy

FROM pg_am am

JOIN pg_opclass opc ON opcmethod = am.oid

JOIN pg_amop amop ON amopfamily = opcfamily

JOIN pg_operator opr ON opr.oid = amopopr

WHERE amname = 'brin'

AND opcname = 'numeric_bloom_ops'

ORDER BY amopstrategy;

amopopr | oprcode | amopstrategy

−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−+−−−−−−−−−−−−−−

=(numeric,numeric) | numeric_eq | 1

(1 row)

Let’s take the flight_no column that stores flight numbers; it has near-zero corre-

lation, so it is useless for a regular range operator class. We will keep the default

615

Chapter 29 BRIN

false-positive setting; as for the number of distinct values in a range, it can be

easily calculated. For example, for an eight-page range we will get the following

value:

=> SELECT max(nd)

FROM (

SELECT count(distinct flight_no) nd

FROM flights_bi

GROUP BY tid2page(ctid) / 8

) t;

max

−−−−−

22

(1 row)

For smaller ranges, this number will be even lower (but in any case, the operator

class does not allow values smaller than ��).

We just have to create an index and check the execution plan:

=> CREATE INDEX ON flights_bi USING brin(

flight_no bpchar_bloom_ops(

n_distinct_per_range = 22)

)

WITH (pages_per_range = 8);

=> EXPLAIN (analyze, costs off, timing off, summary off)

SELECT *

FROM flights_bi

WHERE flight_no = 'PG0001';

QUERY PLAN

−−−

Bitmap Heap Scan on flights_bi (actual rows=5192 loops=1)

Recheck Cond: (flight_no = 'PG0001'::bpchar)

Rows Removed by Index Recheck: 122894

Heap Blocks: lossy=2168

−> Bitmap Index Scan on flights_bi_flight_no_idx (actual rows=...

Index Cond: (flight_no = 'PG0001'::bpchar)

(6 rows)

=> RESET max_parallel_workers_per_gather;

The graph shows that for some flight numbers (represented by separate points that

do not belong to any whiskers) the index does not work very well, but its overall

efficiency is quite high:

616

29.9 Bloom Classes

0,70 0,75 0,80 0,85 0,90 0,95 1,00

efficiency
factor

2 pages/range,
14,8 MB

4 pages/range,
7,4 Mb

8 pages/range,
3,7 MB

617

Conclusion

Well, now our journey is coming to an end. I hope that you have found the book

useful—or at least interesting—and have learned something new from it (I myself

did learn a lot while I was writing it).

Most of the covered information is likely to remain up-to-date for quite a long time,

but some details will inevitably change very fast. I believe that the biggest value

of this book is not a set of particular facts but rather the approach to exploring

the system that I show. Neither this book nor the documentation should be taken

for granted. Contemplate, experiment, verify all the facts yourself: Postgre���

provides all the tools that you need for it, and I tried to show how to use them. It

is usually almost as easy as asking a question on a forum or googling the answer,

but is definitely much more reliable and useful.

For the same reason, I wanted to encourage you to look into the code. Do not get

intimidated by its complexity: simply try it out. Open source is a great advantage,

so take this opportunity.

I will be happy to get your feedback; you can send your comments and ideas to

edu@postgrespro.ru. I am going to update the book regularly, so your comments

can help me improve future editions. The latest online version of the book is avail-

able for free at postgrespro.com/community/books/internals.

Good luck!

618

mailto:edu@postgrespro.ru
https://postgrespro.com/community/books/internals

Index

A

Aborting transactions 84, 88, 91,

251, 271

Access method

index 356, 417

properties 366

table 335

Aggregate 340–341

Aggregation 340, 345

hashing 439, 459

sorting 459

Alignment 75

Analysis 128, 311, 389, 470

Anomaly

dirty read 46, 48, 52

lost update 48, 58, 60

non-repeatable read 49, 54, 61

phantom read 49, 61, 270

read skew 56, 58, 62

read-only transaction 65, 68,

270

write skew 64, 67, 270

Append 440

Array 538, 582, 590

“Asterisk,” the reasons not to use it

37, 421, 455

Atomicity 47, 91

autoprewarm leader 187–189

autoprewarm worker 189

autosummarize 597

autovacuum 129

autovacuum launcher 129–131

autovacuum worker 130

autovacuum_analyze_scale_factor

133

autovacuum_analyze_threshold 133

autovacuum_enabled 121, 131

autovacuum_freeze_max_age 149,

154–155

autovacuum_freeze_min_age 155

autovacuum_freeze_table_age 155

autovacuum_max_workers 130, 139,

144

autovacuum_multix-

act_freeze_max_age

247

autovacuum_naptime 130–131

autovacuum_vacuum_cost_delay 139,

144, 155

autovacuum_vacuum_cost_limit 139,

144

autovacuum_vacuum_in-

sert_scale_factor

132–133

autovacuum_vacuum_insert_thresh-

old

132–133

autovacuum_vacuum_scale_factor

131–132

autovacuum_vacuum_threshold

131–132

autovacuum_work_mem 130

autovacuum_freeze_max_age 154

619

Index

B

Backend 39

Background worker 127, 130, 347

Background writing 205

setup 208

Batch processing 166, 257

bgwriter 205, 208–210, 224

bgwriter_delay 208

bgwriter_lru_maxpages 208, 210

bgwriter_lru_multiplier 208

Binding 305

Bison 290

Bitmap 388

NULL values 75

Bitmap Heap Scan 330, 388, 392, 394

Bitmap Index Scan 330, 388, 392,

394, 397

BitmapAnd 391

Bloating 105, 119, 165, 339, 475,

486, 491, 509

Block see page

bloom 614

Bloom filter 532, 613

Box plot 603

BRIN 591

efficiency factor 602

operator class 596, 598, 608,

611–612, 614

pages 594

properties 604

B-tree 481, 524, 563, 566, 584

operator class 493, 568, 599

pages 486

properties 504

btree_gin 584

btree_gist 524, 538

Buffer cache 38, 171, 192, 198, 277,

338, 357, 381

configuration 184

eviction 179

local 189, 355

Buffer pin 173, 175, 278

Buffer ring 181, 338

C

Cardinality 300, 310, 381

join 406

Cartesian product 399, 401

Checkpoint 198, 216

monitoring 208

setup 205

checkpoint_completion_target

205–206

checkpointer 198–199, 204, 206,

208–210, 216

checkpoint_timeout 206, 209

checkpoint_warning 208

client_encoding 580

CLOG 81, 155, 192, 195, 198

Cluster 23

Cmin and cmax 101

Collation 361, 495, 557

Combo-identifier 101

Commit 81, 195, 251

asynchronous 212

synchronous 212

commit_delay 212

commit_siblings 212

Consistency 45, 47

Correlated predicates 301, 330

Correlation 325, 376, 387, 591, 600,

611

Cost 295, 299, 302

620

Index

cpu_index_tuple_cost 378

cpu_operator_cost 340, 378, 423, 445,

450, 459

cpu_tuple_cost 339, 341, 379, 411,

423, 445, 450

CTE Scan 352–353

CTID 75, 112

cube 537

Cursor 100, 176, 300, 308, 351

cursor_tuple_fraction 300, 308

D

Database 23

data_checksums 217

Deadlocks 232, 258, 267–268

deadlock_timeout 259, 267, 280

debug_print_parse 291

debug_print_plan 294

debug_print_rewritten 292

deduplicate_items 491

Deduplication 491, 563

default_statistics_target 311,

319–320, 323, 334

default_table_access_method 335

default_text_search_config 530

default_transaction_isolation 70

Demo database 287, 509, 592

Dirty read 48, 52

Durability 47

E

effective_cache_size 381–382

effective_io_concurrency 388

enable_bitmapscan 380

enable_hashjoin 445, 447

enable_memoize 412

enable_mergejoin 413

enable_parallel_hash 431, 434

enable_seqscan 262, 380, 582, 612

Equi-join 399, 437, 444, 469

Eviction 179, 194, 205

Execution 302, 306

F

false_positive_rate 615

fastupdate 268, 574

fdatasync 216

fillfactor 108–109, 115–116, 147,

150, 158, 271, 471, 509, 543,

607

Finalize Aggregate 346

Finalize GroupAggregate 461

Flex 290

force_parallel_mode 351

Foreign keys 242, 244, 406

Fork 28

free space map 30, 108, 120

initialization 30

main 29, 74, 600

visibility map 31, 108, 149–150,

163, 384

Freezing 146, 162, 177, 246

manual 155

from_collapse_limit 296, 298

fsync 216

Full page image 202

full_page_writes 219, 221

Full-text search 527

indexing 529, 564

partial 570

phrase 579

ranking 579

fuzzystrmatch 562

621

Index

G

Gather 342, 344–346, 352, 458

Gather Merge 458–459

geqo 298

geqo_threshold 298

Getting the result 308

gevel 512, 547

GIN 563

deferred update 267

fast update 574

operator class 564, 568, 582,

585

pages 566

properties 577

gin_fuzzy_search_limit 576

gin_pending_list_limit 575

GiST 507, 610

operator class 508, 512, 612

pages 511

properties 525, 536

GroupAggregate 461

Grouping 439, 460

H

Hash 419, 422, 427, 469

operator class 476

page 470

properties 477

Hash Join 419, 422, 427

Hash table 174, 277, 279, 410, 419,

469

HashAggregate 439–440

hash_mem_multiplier 410, 420, 433,

440

Header

page 72, 122

row version 75

tuple 241

High key 487, 489, 566

Hint bits see information bits

Histogram 320

Horizon 102–103, 108, 123, 165, 385

HOT updates 112, 491

hstore 539, 590

I

idle_in_transaction_session_timeout

166

ignore_checksum_failure 218

Incremental Sort 456

Index 356, 362

covering 370, 383, 386, 504, 552

include 525

integrity constraint 368, 370,

478, 504, 522, 525, 552

multicolumn 369, 499,

503–504, 525, 578, 605

on expression 328, 363, 612

ordering 367, 372, 481, 495,

499, 503–504

partial 374

pruning 118, 486, 491

statistics 328

unique 242, 368, 370, 483, 491,

504

vacuuming 475, 575

versioning 86

Index Only Scan 383

Index Scan 375–377, 380, 406, 408

Indexing engine 357, 366

Information bits 75, 79, 82, 95, 219,

241

InitPlan 316, 354

Instance 23

622

Index

intarray 538, 590

Integrity constraints 45

Isolation 47

snapshot 51, 67, 94, 241

J

Join

anti- and semi- 400, 414

cost estimation 402, 408, 411,

422, 429, 444, 449, 451, 454,

457–458

different methods 462

hashing 419, 424

inner 399

merging 442, 499

nested loop 400

order 294, 296, 421, 444

outer 399, 413, 444

parallel hash 432, 434

parameterized 405

join_collapse_limit 296–298

JSON 585, 590

jsquery 590

K

k-D tree 554

L

Locks 50, 229, 357

advisory 268

escalation 241, 273

heavyweight 231, 242

lightweight 277

memory 173

no waits 166, 256

non-relation 265

page 267

predicate 270

queue 237, 247, 253

relation 128, 159, 164, 224, 234

relation extension 267

row 167, 241

spinlocks 276

tranche 278

transaction ID 233

tuple 247

lock_timeout 257–258

log_autovacuum_min_duration 143

log_checkpoints 208

logical 222, 226

log_lock_waits 280

log_temp_files 427, 454

Lost update 48, 58, 60

ltree 538

M

maintenance_io_concurrency 389

maintenance_work_mem 126, 140,

143, 575

Map

bitmap 470, 591, 596, 605

free space 30, 108, 120

freeze 31, 149, 152, 163

visibility 31, 108, 149–150, 163,

384

Materialization 352, 402, 409

Materialize 402, 404–405, 409–411,

413

max_connections 232, 273

max_locks_per_transaction 232

max_parallel_processes 187

max_parallel_workers 347

max_parallel_workers_per_gather

347–349

623

Index

max_pred_locks_per_page 273

max_pred_locks_per_relation 274

max_pred_locks_per_transaction

273–274

max_wal_senders 222

max_wal_size 206, 209

max_worker_processes 130, 347

Memoize 409–412, 463

Merge Join 442

Merging 442, 452, 458

minimal 216, 222, 224–225

min_parallel_index_scan_size 127

min_parallel_table_scan_size 348

min_wal_size 207

MixedAggregate 461

Multitransactions 245

wraparound 246

Multiversion concurrency control

52, 74, 119, 491

N

n_distinct_per_range 614

Nearest neighbor search 372, 517,

527, 554

Nested Loop 295, 400–401, 406, 411

Nested Loop Anti Join 415

Nested Loop Left Join 400, 413

Nested Loop Semi Join 416

Non-repeatable read 49, 54, 61

Non-uniform distribution 317, 427,

471

NULL 75, 314, 373, 503, 506, 526,

553, 606

O

OID 24

old_snapshot_threshold 166

Operator class 359, 417, 564

parameters 534, 609, 614

support functions 364

Operator family 364

Optimization see planning

P

Page 32, 470

dirty 172

fragmentation 75, 110

full image 202

header 157, 163

prefetching 388

split 118, 484–485, 521, 550,

574

pageinspect 72, 76, 80, 86, 148, 194,

243, 470, 511, 547, 566, 595

pages_per_range 591

Parallel Bitmap Heap Scan 397

Parallel execution 342, 347, 395,

417, 431, 445, 458, 461

limitations 350

Parallel Hash 433

Parallel Hash Join 433

Parallel Index Only Scan 432

Parallel Seq Scan 343–344

parallel_leader_participation 342,

344

parallel_setup_cost 345, 458

parallel_tuple_cost 345, 459

parallel_workers 348

Parsing 290

Partial Aggregate 345

Partial GroupAggregate 461

pgbench 214, 219, 282

pg_buffercache 173, 185

pg_checksums 217

624

Index

pg_controldata 201

PGDATA 23

pg_dump 106

pg_prewarm 187

pg_prewarm.autoprewarm 187

pg_prewarm.autoprewarm_interval

187

pg_rewind 193

pgrowlocks 246, 263

pgstattuple 159–160

pg_test_fsync 216

pg_trgm 539, 562, 580

pg_visibility 122, 149

pg_wait_sampling 282

pg_wait_sampling.profile_period 283

pg_waldump 197, 204, 223

Phantom read 49, 61, 270

Plan 294

generic and custom 306

plan_cache_mode 308

Planning 294, 306

Pointers to tuples 74

Portal 302

postgres 37

postmaster 37–39, 130, 201, 203, 342

Preparing a statement 304

ProcArray 82, 96

Process 37

Protocol 40

extended query 304

simple query 290

Pruning 108, 115, 118, 486, 491

psql 17, 20, 24, 92–93, 281, 287

Q

Quadtree 541

R

random_page_cost 339, 380, 392

RD-tree 530

Read Committed 49, 51–54, 56, 58,

61–62, 70–71, 94, 102, 104,

106, 123, 251

Read skew 56, 58, 62

Read Uncommitted 48–49, 51–52

Read-only transaction anomaly 65,

68, 270

Recheck 357, 375, 390, 529, 536,

553, 583

Recovery 201

Relation 27

Repeatable Read 49, 51–52, 61–62,

64–65, 67, 69–71, 94, 103,

106, 156, 251, 271

replica 222, 224–226

Rewriting see transformation

Row version see tuple

RTE 291

R-Tree 509

Rule system 292

RUM 579

S

Savepoint 88

Scan

bitmap 371, 387, 479, 505, 526,

552, 576, 606

cost estimation 338, 343, 376,

384, 391, 611

index 272, 371, 375, 505, 526,

552

index-only 312, 373, 383, 479,

527, 533, 553, 561

method comparison 397

625

Index

parallel index 395

parallel sequential 343

sequential 271, 337

skip 501

Schema 25

search_path 25

seg 538

Segment 28, 196

Selectivity 300, 338

join 406

Seq Scan 295, 338, 340–341, 354

seq_page_cost 339, 380, 392, 430

Serializable 50–51, 67, 69–71, 94,

103, 106, 251, 270–271,

274, 351

Server 23

shared_buffers 184

shared_preload_libraries 187, 282

Signature 532, 614

slowfs 283

Snapshot 94, 97, 224

export 106

system catalog 105

Sort 447–448, 450, 459, 462

Sorting 372, 442, 447, 481, 499, 503

external 452

heapsort 450

incremental 456

parallel 458

quicksort 449

Special space 73

SP-GiST 540

operator class 541, 543, 557

pages 547

properties 552, 561

Split

bucket 469, 472

page 484–485, 521, 550, 574

startup 201–203

Starvation 247, 253

statement_timeout 258

Statistics 128, 300

basic 310, 384

correlation 325, 377, 600, 611

distinct values 315, 331, 601

expression 326, 334

extended 327

field width 325

histogram 320, 444

most common values 317, 333,

407, 427

multivariate 329

non-scalar data types 324

NULL fraction 314

SubPlan 353–354

Subtransaction 88, 198

Support functions 364

Synchronization 212, 216

synchronous_commit 211–213

System catalog 24, 224, 291

T

Tablespace 26

temp_buffers 190

temp_file_limit 190, 425

Tid Scan 376

Timeline 196

TOAST 25, 32, 87, 182

track_commit_timestamp 96

track_counts 129

track_io_timing 179

Transaction 46, 78, 94

abort 84, 88, 91, 251, 271

626

Index

age 145

commit 81, 195, 212, 251

status 96, 195

subtransaction 88, 198

virtual 87, 233

Transaction ID

lock 233

wraparound 145, 153

Transformation 291

Tree

balanced 482, 486, 507, 563

non-balanced 540

parse 290

plan 294

radix 556

signature 532

Trigrams 580

Truncation

heap 128

suffix 493

Tuple 74

insert only 127, 132

Tuple ID 74, 356, 564

Tuple pointer 110

U

Unique 460

V

Vacuum 103, 176, 311, 357, 385,

475, 598

aggressive 151

autovacuum 129, 259

full 158

monitoring 140, 161

phases 126

routine 120

vacuum_cost_delay 138, 155

vacuum_cost_limit 138–139

vacuum_cost_page_dirty 138

vacuum_cost_page_hit 138

vacuum_cost_page_miss 138

vacuum_failsafe_age 149, 155

vacuum_freeze_min_age 149–150,

152, 156

vacuum_freeze_table_age 149,

151–152

vacuum_index_cleanup 156

vacuum_multixact_failsafe_age 247

vacuum_multixact_freeze_min_age

247

vacuum_multixact_freeze_table_age

247

vacuum_truncate 128

vacuum_freeze_min_age 150

values_per_range 609

Virtual transaction 87

Visibility 95, 100, 337, 357, 375, 384

Volatility 57, 364, 374

W

Wait-for graph 258

Waits 280

sampling 282

unaccounted-for time 281, 283

WAL see write-ahead log

wal_buffers 193

wal_compression 219

wal_keep_size 208

wal_level 222

wal_log_hints 219

wal_recycle 207

wal_segment_size 196

walsender 211, 222

627

Index

wal_skip_threshold 222–223

wal_sync_method 216

walwriter 212–213

wal_writer_delay 212–213

wal_writer_flush_after 213

WindowAgg 448

work_mem 19, 303, 389–391, 393,

402, 410, 420, 427, 431, 433,

440, 449, 461

Write skew 64, 67, 270

Write-ahead log 39, 191, 279, 336,

357

levels 221

X

Xmin and xmax 75, 77, 81, 83, 95,

145, 241, 246

628

	About This Book
	Introduction
	Data Organization
	Databases
	System Catalog
	Schemas
	Tablespaces
	Relations
	Files and Forks
	Pages
	TOAST

	Processes and Memory
	Clients and the Client-Server Protocol

	Part I Isolation and MVCC
	Isolation
	Consistency
	Isolation Levels and Anomalies in SQL Standard
	Lost Update
	Dirty Reads and Read Uncommitted
	Non-Repeatable Reads and Read Committed
	Phantom Reads and Repeatable Read
	No Anomalies and Serializable
	Why These Anomalies?

	Isolation Levels in PostgreSQL
	Read Committed
	Repeatable Read
	Serializable

	Which Isolation Level to Use?

	Pages and Tuples
	Page Structure
	Page Header
	Special Space
	Tuples
	Item Pointers
	Free Space

	Row Version Layout
	Operations on Tuples
	Insert
	Commit
	Delete
	Abort
	Update

	Indexes
	TOAST
	Virtual Transactions
	Subtransactions
	Savepoints
	Errors and Atomicity

	Snapshots
	What is a Snapshot?
	Row Version Visibility
	Snapshot Structure
	Visibility of Transactions' Own Changes
	Transaction Horizon
	System Catalog Snapshots
	Exporting Snapshots

	Page Pruning and HOT Updates
	Page Pruning
	HOT Updates
	Page Pruning for HOT Updates
	HOT Chain Splits
	Page Pruning for Indexes

	Vacuum and Autovacuum
	Vacuum
	Database Horizon Revisited
	Vacuum Phases
	Heap Scan
	Index Vacuuming
	Heap Vacuuming
	Heap Truncation

	Analysis
	Automatic Vacuum and Analysis
	About the Autovacuum Mechanism
	Which Tables Need to be Vacuumed?
	Which Tables Need to Be Analyzed?
	Autovacuum in Action

	Managing the Load
	Vacuum Throttling
	Autovacuum Throttling

	Monitoring
	Monitoring Vacuum
	Monitoring Autovacuum

	Freezing
	Transaction ID Wraparound
	Tuple Freezing and Visibility Rules
	Managing Freezing
	Minimal Freezing Age
	Age for Aggressive Freezing
	Age for Forced Autovacuum
	Age for Failsafe Freezing

	Manual Freezing
	Freezing by Vacuum
	Freezing Data at the Initial Loading

	Rebuilding Tables and Indexes
	Full Vacuuming
	Why is Routine Vacuuming not Enough?
	Estimating Data Density
	Freezing

	Other Rebuilding Methods
	Alternatives to Full Vacuuming
	Reducing Downtime During Rebuilding

	Precautions
	Read-Only Queries
	Data Updates

	Part II Buffer Cache and WAL
	Buffer Cache
	Caching
	Buffer Cache Design
	Cache Hits
	Cache Misses
	Buffer Search and Eviction

	Bulk Eviction
	Choosing the Buffer Cache Size
	Cache Warming
	Local Cache

	Write-Ahead Log
	Logging
	WAL Structure
	Logical Structure
	Physical Structure

	Checkpoint
	Recovery
	Background Writing
	WAL Setup
	Configuring Checkpoints
	Configuring Background Writing
	Monitoring

	WAL Modes
	Performance
	Fault Tolerance
	Caching
	Data Corruption
	Non-Atomic Writes

	WAL Levels
	Minimal
	Replica
	Logical

	Part III Locks
	Relation-Level Locks
	About Locks
	Heavyweight Locks
	Locks on Transaction IDs
	Relation-Level Locks
	Wait Queue

	Row-Level Locks
	Lock Design
	Row-Level Locking Modes
	Exclusive Modes
	Shared Modes

	Multitransactions
	Wait Queue
	Exclusive Modes
	Shared Modes

	No-Wait Locks
	Deadlocks
	Deadlocks by Row Updates
	Deadlocks Between Two UPDATE Statements

	Miscellaneous Locks
	Non-Object Locks
	Relation Extension Locks
	Page Locks
	Advisory Locks
	Predicate Locks

	Locks on Memory Structures
	Spinlocks
	Lightweight Locks
	Examples
	Buffer Cache
	WAL Buffers

	Monitoring Waits
	Sampling

	Part IV Query Execution
	Query Execution Stages
	Demo Database
	Simple Query Protocol
	Parsing
	Transformation
	Planning
	Execution

	Extended Query Protocol
	Preparation
	Parameter Binding
	Planning and Execution
	Getting the Results

	Statistics
	Basic Statistics
	NULL Values
	Distinct Values
	Most Common Values
	Histogram
	Statistics for Non-Scalar Data Types
	Average Field Width
	Correlation
	Expression Statistics
	Extended Expression Statistics
	Statistics for Expression Indexes

	Multivariate Statistics
	Functional Dependencies Between Columns
	Multivariate Number of Distinct Values
	Multivariate MCV Lists

	Table Access Methods
	Pluggable Storage Engines
	Sequential Scans
	Cost Estimation

	Parallel Plans
	Parallel Sequential Scans
	Cost Estimation

	Parallel Execution Limitations
	Number of Background Workers
	Non-Parallelizable Queries
	Parallel Restricted Queries

	Index Access Methods
	Indexes and Extensibility
	Operator Classes and Families
	Operator Classes
	Operator Families

	Indexing Engine Interface
	Access Method Properties
	Index-Level Properties
	Column-Level Properties

	Index Scans
	Regular Index Scans
	Cost Estimation
	Good Scenario: High Correlation
	Bad Scenario: Low Correlation

	Index-Only Scans
	Indexes with the Include Clause

	Bitmap Scans
	Bitmap Accuracy
	Operations on Bitmaps
	Cost Estimation

	Parallel Index Scans
	Comparison of Various Access Methods

	Nested Loop
	Join Types and Methods
	Nested Loop Joins
	Cartesian Product
	Parameterized Joins
	Caching Rows (Memoization)
	Outer Joins
	Anti- and Semi-joins
	Non-Equi-joins
	Parallel Mode

	Hashing
	Hash Joins
	One-Pass Hash Joins
	Two-Pass Hash Joins
	Dynamic Adjustments
	Hash Joins in Parallel Plans
	Parallel One-Pass Hash Joins
	Parallel Two-Pass Hash Joins
	Modifications

	Distinct Values and Grouping

	Sorting and Merging
	Merge Joins
	Merging Sorted Sets
	Parallel Mode
	Modifications

	Sorting
	Quicksort
	Top-N Heapsort
	External Sorting
	Incremental Sorting
	Parallel Mode

	Distinct Values and Grouping
	Comparison of Join Methods

	Part V Types of Indexes
	Hash
	Overview
	Page Layout
	Operator Class
	Properties
	Access Method Properties
	Index-Level Properties
	Column-Level Properties

	B-tree
	Overview
	Search and Insertions
	Search by Equality
	Search by Inequality
	Search by Range
	Insertions

	Page Layout
	Deduplication
	Compact Storage of Inner Index Entries

	Operator Class
	Comparison Semantics
	Multicolumn Indexes and Sorting

	Properties
	Access Method Properties
	Index-Level Properties
	Column-Level Properties

	GiST
	Overview
	R-Trees for Points
	Page Layout
	Operator Class
	Search for Contained Elements
	Nearest Neighbor Search
	Insertion
	Exclusion Constraints
	Properties

	RD-Trees for Full-Text Search
	About Full-Text Search
	Indexing tsvector Data
	Properties

	Other Data Types

	SP-GiST
	Overview
	Quadtrees for Points
	Operator Class
	Page Layout
	Search
	Insertion
	Properties

	K-Dimensional Trees for Points
	Radix Trees for Strings
	Operator Class
	Search
	Insertion
	Properties

	Other Data Types

	GIN
	Overview
	Index for Full-Text Search
	Page Layout
	Operator Class
	Search
	Frequent and Rare Lexemes
	Insertions
	Limiting Result Set Size
	Properties
	GIN Limitations and RUM Index

	Trigrams
	Indexing Arrays
	Indexing JSON
	jsonb_ops Operator Class
	jsonb_path_ops Operator Class

	Indexing Other Data Types

	BRIN
	Overview
	Example
	Page Layout
	Search
	Summary Information Updates
	Value Insertion
	Range Summarization

	Minmax Classes
	Choosing Columns to be Indexed
	Range Size and Search Efficiency
	Properties

	Minmax-Multi Classes
	Inclusion Classes
	Bloom Classes

	Conclusion
	Index

